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I. Motivating Example

Deep Neural Networks (DNNs) have become integral to various real-world autonomous

mobile systems, from self-driving cars to food delivery robots. These systems rely on

learned components, which are often susceptible to unexpected inputs from the set of

realistic deployment conditions [1], resulting in system misbehaviors.

Figure 1. A DeepBillboard [2] in-situ patch attack.

However, current adversarial attack techniques often focus on maximizing the attack

strength at the cost of naturalness, leading to examples that are easily detected by hu-

mans or deviate significantly from the expected input distribution. This trade-off between

adversarial strength and natural appearance presents a critical challenge in ensuring the

robustness and reliability of DNNs in practical settings. This poster presents the Natural

Adversarial DNNValidation (NaturalADV) framework for balancing the trade-off between

adversarial strength and naturalness of a perturbation.

II. Perturbation Strength-Naturalness Tradeoff

Adversarial perturbations in deep neural networks (DNNs) often involve a fundamen-

tal tradeoff between strength and naturalness. The strength of an adversarial attack

refers to how effectively the perturbation induces misclassification or otherwise dis-

rupts the model’s behavior. Naturalness [1] refers to howwell the adversarial example

aligns with the expected distribution of inputs – whether it “looks real” to humans or

conforms to what the model would typically encounter under realistic deployment cir-

cumstances. Naturalness is often used interchangeably with stealthiness, which refers

to the perceptual imperceptibility of the perturbation; a stealthy attack introduces min-

imal visual artifacts, making it hard for a human observer to detect any manipulation.

Striking a balance between these two properties of strength and naturalness is critical,

especially for real-world adversarial scenarios where overly artificial perturbations may

be unrealistic, implausible, or easily detectable.

III. Perturbation Generation Loop

Figure 2 depicts a high-level overview of the generation loop for the NaturalADV frame-

work. It takes in two images of the patch region of the deployment environment, one

with the original adversarial perturbation known to have high adversarial strength under

a given deployment [3] and a natural target patch, an image set imgs taken from an ADS

navigating a driving environment without an adversarial patch, a navigation DNN, itera-
tions of gradient ascent iters, a differentiable image similarity metric similarity, and
weights w1 for the image similarity loss and w2 for the perturbed prediction loss between

the original perturbation and the target patch.

Figure 2. NaturalADV perturbation generation loop.

The framework alternates between calculating the loss function (see Equation 1) and

backpropagation combined with Fast Gradient Sign Method (FGSM) to adjust the similar-

ity of the patch to match the target image, while still retaining the adversarial strength of

the original high-strength patch. Similarity and strength are prioritized according to pa-

rameterized weights. After iters loops, the generation loop exits and returns the final

patch for injection into a driving environment.

This framework can also be incorporated into the generation loop of DeepManeuver [3]

to generate more natural state-adaptive perturbations. Additional results can be found

in the GitHub repo at https://github.com/MissMeriel/NaturalADV.

IV. NATURALADV Loss Function

The perturbation loop relies on a loss function for which preserving image similarity

versus perturbation strength has been parameterized:

loss = w1 × similarity(patchnatural, patchorig)
+w2 × L1(DNN(imgs + patchorig), DNN(imgs + patchnatural))

(1)

where similarity is any differentiable image similarity metric (e.g. SSIM, German-

McClure,Welsch, etc.), patchnatural is the natural patchwewant the adversarial patch to

resemble, patchorig is the high-strength but unnatural-looking original adversarial patch,

DNN(imgs + patchorig) is the DNN prediction output for the original high strength

perturbation, DNN(imgs + patchnatural) is the DNN prediction output for the current

version of the natural perturbation, and wx are weights to prioritize image similarity or

DNN prediction loss.

V. Experiments

Perturbation Strength

We explore a range of weights for similarity and prediction (see Equation 1) and report

several performance metrics. Column 2 shows the resulting structural similarity index

measure (SSIM) score when comparing the benign target patch and the generated adver-

sarial patch. Column 3 shows the crash rate under simulated deployment like in Figure 1.

Column 4 shows the average deviation in the vehicle’s trajectory from the road center.

Weights (sim, pred) SSIM Score Crash Rate Avg. traj. deviation

0.00, 1.00 0.24 53% 2.75m

0.10, 0.90 0.21 22% 2.45m

0.25, 0.75 0.33 18% 2.37m

0.50, 0.50 0.46 2% 2.31m

0.75, 0.25 0.51 0% 2.21m

0.90, 0.10 0.70 0% 2.24m

1.00, 0.00 1.00 0% 2.23m

Table 1. Performance metrics for a range of weights using NaturalADV.

Table 1 shows perturbation strength diminishes inversely to SSIM score, where the gen-

erated patch resembles more and more closely the benign target patch. However, the

generated patch still retains the ability to crash the vehicle in deployment when image

similarity loss and prediction loss are equally weighted.

Perturbation Naturalness

((a)) 0.00, 1.00 ((b)) 0.10, 0.90 ((c)) 0.25, 0.75 ((d)) 0.50, 0.50 ((e)) 0.90, 0.10 ((f)) 1.00, 0.00

Figure 3. Patch appearances from original perturbation to benign target patch

Naturalness is dictated by the choice of metric, in this study SSIM. SSIM is designed to

compare two images in terms of luminance, contrast, and structure, or edge detection,

and thus preserves colors of the original perturbation well into the (0.90, 0.10) weighting.

VI. NATURALADV Framework Contributions

NaturalADV can incorporate a number of differentiable naturalness metrics, works with

various gradient traversal algorithms, and scales to attacks represented in multiple sensor

readings. Our contributions are:

a framework to balance the trade-off between adversarial strength and naturalness

for in-situ adversarial patch attacks;

a proof of concept study showing the naturalness-strength tradeoff for the

motivating example; and

an open-source repository with tool and data for reproducibility available at

https://github.com/MissMeriel/NaturalADV.
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