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ABSTRACT
Although many deep neural network (DNN) verification algorithms
have been introduced in recent years, they use inconsistent input
and output formats and provide varying support for DNN archi-
tectures. This makes it difficult to compare verifiers, to choose the
best one for a task, and to re-use verification artifacts. In this work
we present a toolset for running DNN verifiers using a common
input and output format, facilitating application and comparison
of DNN verifiers.

DNNV is available at https://github.com/dlshriver/DNNV. A
video demonstration is available at https://youtube.com/XXXXXX.
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1 INTRODUCTION
Deep neural networks (DNN) are being increasing applied to com-
plex domains. As these techniques mature they are even being de-
ployed in safety critical systems, such as autonomous driving [2, 5].
For such applications, it is often necessary to obtain behavioral
guarantees about the safety of the system. To address this need,
researchers have been actively exploring algorithms for verifying
that the behavior of a trained DNN meets some correctness prop-
erty. In the past two years alone, more than 20 DNN verification
algorithms have been introduced [1, 3, 4, 6, 7, 9, 10, 13–23], and this
number continues to grow. Many approaches also make their tools
publicly availble, such as those shown in Table 1.

Unfortunately, several issues can make it difficult to utilize dif-
ferent verification tools on the same network and properties. This
makes it difficult to compare verifiers, to choose the best one for a
task, and to re-use verification artifacts. First, networks and proper-
ties vary greatly in how they are specified for each verifier. Many
verifiers use their own custom input format, which can make the
verification of new networks difficult, as they must be converted
to non-standard formats. For example, ReLuplex uses a custom for-
mat, NNET, to specify networks, while Planet uses its own custom
network format, RLV, which also includes a property specification.
Second, verifiers differ in their support of network architectures.
Most tools support fully connected layers, some support convo-
lutional layers, and few support residual layers. For example, the
ReLuplex verifier only supports fully connected layers, and requires
all but the last layer to have ReLU activations. MIPVerify only sup-
ports a subset of convolutional layers and requires that they use a
specific padding algorithm. Finally, verifiers are inconsistent in how
they return and format results. All of these issues make it difficult
to run and compare different verifiers.

In this work we introduce a new framework to reduce the burden
of re-using artifacts, running DNN verification tools, and compar-
ing their results for verifier researchers, developers and users. Our

Figure 1: An overview of DNNV.
framework, DNNV, takes as input a network in a common, easily
produced input format, a property written in an expressive domain-
specific language for DNN properties, and the name of a verifier
to run. DNNV transforms the network and property for the spec-
ified verifier and then runs the verifier to determine whether the
property holds or not and returns results in a consistent format.

Next, we present an overview of DNNV and its use, discuss the
implementation details, and present the results of a small study.

2 OVERVIEW
DNNV unifies DNN verifiers in a single framework with a common
input format to facilitate verifier usage and comparison. In this
section we discuss our property DSL and DNN input format, as well
as the currently supported verifiers and basic usage. An overview
of DNNV is shown in Figure 1. The framework takes in a DNN
and a property, and the name of a verifier to run, selects a plugin
for the specified verifier that applies input translators to the DNN
and property specification, then runs the specified verifier and
parses the results. The translators can make use of several utilities
provided by DNNV to simplify plugin implementation.

2.1 Property DSL
Due to the lack of a standard format for specifying DNN properties,
we develop a custom DSL for DNN properties. The goal was to
develop a language that could be independent of a network being
verified and be expressive enough to represent any property that can
be verified by existing verification tools. The resulting property DSL
is defined in Figure 2. It is implemented in the Python programming
language and allows execution of arbitrary Python expressions. A
property specification is a sequence of python module imports,
followed by a sequence of assignments, and ends with a property
expression, specified in a subset of first-order logic.

First, a property specification is allowed to import arbitrary
python code, enabling users to re-use existing code for loading or
processing input data. For example, the Python package numpy
can be imported and used to load a dataset. Inputs can then be
selected from the dataset, or statistics, such as the mean data point
can be computed on the fly. Next, the DSL allows the definition
of variables to be used in the final property specification. These
assignments are not necessary, but allow for more readable property
expressions by allowing repetitive expressions to be aliased. Finally,
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Verifier Input Spec. Property Spec. Layer Support Property Support

Reluplex [11] NNET (A) Hard-coded Fully connected layers; ReLU act. Input interval constraints and linear in-
equalities over the output.

Planet [8] RLV Part of RLV Fully connected, conv., residual, max pool layers;
ReLU act.

Linear inequalities over the input and
output.

ERAN [15, 16] Custom PYT/TF Hard-coded Fully connected, conv., residual, max pool layers;
ReLU, Sigmoid, Tanh act.

Local robustness.

Neurify [18] NNET (B) Hard-coded Fully connected, conv. layers; ReLU act. Local robustness
MIPVerify [17] Model in Julia Julia code Fully connected, conv. (limited) layers; ReLu act. Local robustness

Table 1: Currently supported verification tools.

⟨property⟩ ::= ⟨python-imports⟩ ⟨assignment-list ⟩ ⟨expr ⟩

⟨python-imports⟩ ::= "" | ⟨python-imports⟩ "import" ⟨id ⟩
| ⟨python-imports⟩ "import" ⟨id ⟩ "as" ⟨id ⟩
| ⟨python-imports⟩ "from" ⟨id ⟩ "import" ⟨id ⟩

⟨assignment-list ⟩ ::= "" | ⟨assignment-list ⟩ ⟨assignment ⟩

⟨assignment ⟩ ::= ⟨id ⟩ "=" ⟨expr ⟩

⟨expr ⟩ ::= "Forall(" ⟨id ⟩ "," ⟨expr ⟩ ")"
| "And(" ⟨expr-seq⟩ ")"
| "Or(" ⟨expr-seq⟩ ")"
| "Implies(" ⟨expr ⟩ "," ⟨expr ⟩ ")"
| ...
| ⟨python-expr ⟩

⟨expr-seq⟩ ::= ⟨expr ⟩ | ⟨expr-seq⟩ "," ⟨expr ⟩

Figure 2: Grammar for the DNN property DSL.
the specification must end with a Boolean expression that defines
the semantics of the property.

The property expression can make use of any python built-in
functions or those from imported packages. The property DSL also
provides operations for specifying properties in first order logic
(e.g., Forall, Not, And, Or, Implies), creating symbolic variables (e.g.,
Symbol, Network, Image), and allowing external parameterization
(e.g., Parameter).

An example of a property specifying local robustness is shown
in Listing 1. This property defines a property over some network,
N , and normalized image, x – discussed in §3. For every image that
is within a hyperrectangle of radius 2

255 centered at the image x , the
network predicts the same class as the predicted class of x . Another
property specification is shown in Listing 2. This is Property 1 of the
ACAS network for aircraft collision avoidance [11]. The property
specifies that when an intruding aircraft is more than 55947.69 feet
away, and moving slower than 60 feet per second, and the velocity
of the ownship is at least 1145 feet per second, then the output
score of a Clear-Of-Conflict classification must be no more than
1500. The input constraints are specified as an interval over the
input in lines 3-6.

2.2 DNN Format
As shown in Table 1, column 2, existing tools do not support a
consistent, common input format. To enable support for specifying
general deep neural network architectures, we choose to use an
existing DNN format, ONNX [12]. ONNX is an open source format
for representing DNNs with the ability to represent real-world

1 import numpy as np
2 N = Network("mnist_classifier")
3 x = (Image("image.npy") - 0.1307) / 0.3081
4 eps = Parameter("epsilon", default=2.0 / 255)
5 Forall(_x, Implies(x - eps < _x < x + eps,
6 np.argmax(N(x)) == np.argmax(N(_x))))

Listing 1: Example of a local robustness property.

1 import numpy as np
2 N = Network("acas")
3 x_lb = np.array(
4 [55947.69, -3.14, -3.14, 1145.0, 0.0])
5 x_ub = np.array(
6 [60760.0, 3.14, 3.14, 1200.0, 60.0])
7 Forall(_x, Implies((x_lb <= _x <= x_ub), N(x_)[0] <= 1500))

Listing 2: Property 1 of the ACAS network [11].
networks. Many common frameworks (e.g., PyTorch, MXNet) allow
exporting to ONNX natively, and conversion tools are available for
most other frameworks (e.g., TensorFlow, Keras). While the ONNX
format is expressive enough for any real-world DNN, our current
implementation only supports a subset of the ONNX specification
to handle all fully connected, convolutional, and residual networks
that we have tried, including real-world networks such as VGG16
and ResNet34.

2.3 Verifier Support
DNNV currently includes support for 5 verification tools. These
tools were selected based on the availability of their implementa-
tions. The DNN verifiers supported by the current version ofDNNV
are shown in the top half of Table 1.

We have made an effort to decrease the difficulty of integrat-
ing additional verification tools. Verifiers can be added by writing
plugins for 3 primary components, as shown in Figure 1: an input
translator (which includes a DNN translator plugin, a property
translator plugin, and an DNN and property combination transla-
tion), a verifier runner, and an output translator. Adding a verifier
involves writing a translator from our DNN and property formats
to the input format of the new verifier, writing code to call the new
verifier with the correct arguments, and parsing the verifier output
to get the verification result.

In most cases the most difficult component to write is likely to be
the translators for the DNN and property. To make development of
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the translator easier, we provide several utilities for manipulating
DNNs and properties.

First, we provide tools to parse and manipulate the property. The
property is represented as an abstract syntax tree, which can be
traversed using the visitor pattern. DNNV also provides utilities
for simplifying and transforming the property AST. We provide
utilities for performing constant propagation, as well as converting
the property to conjunctive normal form.

Internally, DNNV represents DNNs as a graph of computations,
such as matrix multiplications or convolutions, which can be tra-
versed using the visitor pattern. Additionally, support is provided
for performing pattern matching on the computation graph. Be-
cause most existing verification tools represent DNNs as a sequence
of DNN layers, we also include a utility for converting from the
computation graph format to a layer format. We include fully con-
nected and convolutional layers in the base implementation, and
allow additional layer types, such as residual layers to be specified
by each tool. Each layer type is specified by a computation graph
pattern. Layer types are matched to the end of the computation
graph, with the longest match being chosen. All of the currently
supported verifiers make use of the layer converter utility.

2.4 Usage
DNNV can be run from the command line with the following argu-
ments: a DNN model in the ONNX format, a property written in
the DNNV DSL, and the name of the verifier (or verifiers) to run.
DNNV can be executed as follows:

python -m dnnv <dnn> <prop> <verifier>

Parameters specified in a property specification can be parameter-
ized by supplying an option of the form --prop.<param>, where
<param> is the name of the parameter. Additional options can be
seen by specifying the -h option.

After execution, DNNV will report the results of verification.
For each verifier, DNNV will report the verification result as one
of SAT (if the property was falsified), UNSAT (if the property was
proven to hold), UNKNOWN (if the verifier is incomplete and could
not prove the property holds), or ERROR, along with the reason for
error, if an error occurs during DNN and property translation, or
during verifier execution. DNNV will also report the total time to
translate and verify the property.

2.5 Limitations
DNNV currently has a few limitations in the properties and net-
works that it can handle. First, it currently only supports properties
over a single network, with interval constraints over the input and
output. However, this is powerful enough to specify many prop-
erties, including local robustness, by far the most commonly used
DNN property. Additionally, our current implementation only sup-
ports a subset of the ONNX specification. However this is enough
to handle all fully connected, convolutional, and residual networks
that we have tried. Finally, translation does add some overhead (on
the order of seconds for the networks in our study). Currently we
do not attempt to otimize input translation, but future work could
attempt to reduce this overhead, potentially by caching network
translation results when verifying multiple properties.

Name # Layers # Neurons
ffnnRELU__Point_6_500 6 3010
convMedGRELU__Point 3 4804
convSmallRELU__Point 3 3604

mnist_conv_maxpool 9 13798
mnist_relu_3_50 3 160
mnist_relu_3_100 3 310
mnist_relu_4_1024 4 4106
mnist_relu_5_100 5 510
mnist_relu_6_100 6 610
mnist_relu_6_200 6 1210
mnist_relu_9_100 9 910
mnist_relu_9_200 9 1810

Table 2: The DNN to which DNNV was applied.

3 EVALUATION
We perform a simple study to demonstrate the ability of DNNV to
apply a set of verifiers to a common set of DNN properties.

The networks and properties for this study were selected from
those used in the evaluations of the ERAN tool. We selected a subset
of the networks with ReLU activation functions. This resulted in
12 networks, shown in Table 2. The networks in the top of the
table apply input pre-processing, while those in the bottom section
do not. To account for this difference, we use 2 sets of properties,
one for the top networks, and one for the bottom networks. The
properties are the same, except for the application of input pre-
processing. An example of a property for the first 3 networks in
Table 2 is shown in Listing 1. The same property for the bottom 9
networks changes only line 3 of this property.

In addition to the networks, the ERAN tool includes 100 MNIST
images for which it verifies local robustness. We select the first 10
images to create 10 local robustness properties to verify. Our local
robustness properties used an epsilon of 0.008, which is within the
range of epsilon values used by several verification tools [15–18].

For each of the 12 networks, we applied all 5 of the supported
verification tools to check the validity of the 10 selected local ro-
bustness properties. Each verification task was allowed to run for
up to 1 hour, with a memory limit of 64GB, and 4 processor cores.

The results of verification are shown in Table 3. Each row of the
table are the results of one of the supported verification tools. The
next 5 columns show the results by verification outcome: UNSAT,
SAT, UNKNOWN, TO, and other. TO indicates that the tool exceeded
the 1 hour time limit, while other indicates that the network or
property are not supported by the verifier. For every result type,
we report the number of properties for which the verify reported
that result. We also report the mean time in seconds to verify the
property for UNSAT, SAT, and UNKNOWN results.

As shown in Table 3, for 3 verifiers, DNNV reported that the
verifier did not support the property. In the case of ReLuplex, 3 of
the networks contain convolutional or max pooling layers, leading
DNNV to report that 30 properties were not supported by the veri-
fier. Similarly for Neurify, 1 of the networks contains max pooling
layers, which are not supported. Finally, none of the properties spec-
ified are supported byMIPVerify due to an implicit assumption that
inputs will always have values in the range [0, 1], which does not
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Verifier UNSAT SAT UNKNOWN TO other
# Time # Time # Time # #

ReLuplex 0 NA 0 NA 0 NA 90 30
Planet 0 NA 0 NA 0 NA 120 0
MIPVerify 0 NA 0 NA 0 NA 0 120
MIPVerify * 33+ 133.13 0 NA 0 NA 10 22
Neurify 75 5.32 5 3.64 16 4.80 14 10
ERAN 72 4.81 0 NA 48 11.10 0 0

Table 3: Verification results for 10 properties across 12 net-
works using 5 verifiers. {DS: waiting for final MIPVerify* re-
sults}

hold for the specified properties. Because of this, DNNV correctly
reports that the property is not supported by this verifier. In order
to showMIPVerify verifying properties, we disable the input bounds
check in the property translator and re-run verification. The results
are reported in row 4. DNNV still reports errors on 22 property
checks. Most of these are due to unsupported convolutional layers,
but 2 occur during verification due to violation of the input bounds
assumption.

As seen in Table 3, DNNV facilitates the application of DNN
verification tools by enabling users to write property spec-
ifications once for many verifiers. For example, the same 10
property specifications could be used for 9 of the networks, across
all of the verifiers in this study. DNNV can significantly simplify
the process of running verification tools. For this study, we had a
total of 12 network specifications and 20 property specifications.
Previously, to run all 5 of the verifiers supported by DNNV would
have required 60 network specifications (each verifier uses its own
input specification), and at least 500 property specifications, since
3 of the verifiers specify networks and properties in a single input
file.

4 CONCLUSION
In this work we present the DNNV toolset for verifying DNN.
DNNV provides a common framework for running DNN verifi-
cation tools. It utilizes a standard, easily produced DNN format to
specify the network to be verified, and introduces a custom DSL to
specify the property to verify. DNNV facilitates integration of veri-
fication tools and simplifies the application of verification tools to
DNNs by both DNN developers and DNN verification researchers.
It will lead to safer DNNs, as well as easier comparisons between
verifiers and re-use of verification artifacts. Our experiments show
that DNNV can significantly simplify the process of running verifi-
cation tools by enabling specifications to be written once and used
by many tools.
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