
Automated Environment Reduction for Debugging Robotic Systems

Meriel von Stein1 and Sebastian Elbaum2

Abstract— Complex environments can cause robots to fail.
Identifying the key elements of the environment associated
with such failures is critical for faster fault isolation and,
ultimately, debugging those failures. In this work we present
the first automated approach for reducing the environment
in which a robot failed. Similar to software debugging tech-
niques, our approach systematically performs a partition of
the environment space causing a failure, executes the robot in
each partition containing a reduced environment, and further
partitions reduced environments that still lead to a failure. The
technique is novel in the spatial-temporal partition strategies it
employs, and in how it manages the potential different robot
behaviors occurring under the same environments. Our study of
a ground robot on three failure scenarios finds that environment
reductions of over 95% are achievable within a 2-hour window.

I. INTRODUCTION

When a robot fails in a complex environment the debug-
ging process is challenging. There are usually large bags of
time-stamped data, interweaving logical and physical states
variables, multiple interconnected subsystems and processes,
many unstated assumptions and unseen variables, and sub-
sequently many potential hypotheses about what could have
gone wrong [1], [12].

A critical step in this debugging process, and the focus
of this paper, is the reduction of the environment where
the robot failure was observed. Robots sense and act on
their environment, yet it is usually the case that not all
the elements in an executing environment are relevant to
the failure. Simplifying the environment causing the failure
can accelerate debugging by helping to communicate the
essential issues associated with a failure and reducing the
number of debugging hypotheses to consider [19].

Today, even with advanced simulation capabilities that al-
low for the reproduction of failure causing tests, the reduction
of the environment while debugging robot failures is largely a
tedious, manual process [11]. We argue that a cost-effective
path forward, borrowing from similar software debugging
techniques [18], [19], is to re-execute the test that caused the
robot to fail while automatically and systematically reducing
the environment. This cycle of environment reduction and
test re-execution is repeated as long as a reduced environment
retains the original failure and can be further manipulated.

In this work, we introduce the first automated approach
to reduce a failure-inducing environment for robots that:
1) leverages the principles of binary search employed in

1University of Virginia, USA, meriel@virginia.edu
2University of Virginia, USA, selbaum@virginia.edu
The authors thank the progenitors of the Husky project for making it

open-source and well maintained. This work was funded in part by NSF
#1924777 and #1853374.

software debugging, and 2) accounts for the unique charac-
teristics of the robotics domain such as the spatial-temporal
relationships between the elements of the environment and
the non-determinism associated with the robot operation. As
we show, these unique characteristics significantly affect how
to partition the elements in an environment and how the
reduction is prioritized according to the influence on those
elements on the robot operation.

The contributions of this paper are as follows:
• an environment reduction technique for robot systems

based on the physical properties of robots and their
environments. Our technique leverages these physical
properties to perform temporally and spatially aware
partitioning of the environment, and handles nondeter-
minism through the repeated execution of tests to match
the likelihood of the failure.

• an automated framework that implements the tech-
nique. It incorporates three partitioning and prioritiza-
tion schema pairings as well as a failure characterization
based on the robot’s pose that serves as an oracle. It also
includes a configurable deflaking process to deal with
non-deterministic executions. This framework is inte-
grated with the Gazebo simulator for the manipulation
of environments.

• a study of 3 scenarios on a popular open source
autonomous ground vehicle system in three distinct
failure-causing environments. It shows that the tech-
nique can reduce the number of elements in the en-
vironment by an average of 78% and a maximum of
95% while retaining the original failure, and be applied
with minimal developer involvement.

II. BACKGROUND

We present an overview of the techniques to isolate failure
inducing environments, and more in general debugging, into
two groups, those focused on software systems, and those
tailored to robotics.

Unlike those tailored to robotics, software debugging
techniques were largely designed for hardware-independent
programs. Wong et al. [18] provide an extensive survey of
software fault localization techniques, ranging from tradi-
tional debugging techniques (e.g., logging, assertions, break-
points) to more sophisticated static and dynamic analy-
sis techniques (e.g., slicing, program-spectrum, statistical).
Among the many software debugging techniques, one of
the most popular is known as delta debugging, codified by
Zeller et al. [19] in their algorithm(ddmin). This approach
formalized the logic that, given a set of changes to a program
that conform to a set of properties ensuring monotonicity
and validity, a subset of those changes is responsible for



introducing a fault. Delta debugging used a variant of binary
search to systematically explore the change space and iso-
late the failure inducing changes. It implicitly assumed the
program under consideration to be deterministic and without
that assumption, the technique’s effectiveness and efficiency
suffer. The approach was later applied to explore the space of
failure-inducing inputs attempting to identify the key inputs
that cause a program to fail [20]. This work provides the
bases for the environment reduction problem that we tackle.
Now, many variants of delta debugging have been proposed,
often integrated with other approaches (e.g., [2], [3], [7],
[8], [13], [17]), and when put in the hands of software
engineers they have shown to accelerate the debugging
process [10]. We base our approach and terminology on
this body of work around delta debugging but with a focus
on physical environments in which a robot operates. These
environments require special manipulation that recognizes
physical constraints and ties to real-world processes.

Different from delta-debugging, Nie et al. [14] explored
input space reduction using coverage arrays. Their focus is on
the reduction of well-defined configuration spaces, for which
coverage arrays are particularly well suited to guarantee a
target level of coverage among the configuration parameters.
Although we imagine such an approach could be adapted to
the robotics domain with the redefinition of configurations in
terms of, for example, motion planning, it seems like a poor
match for the reduction of environments in which mobile
robots operate given their size and complexity.

Because robot systems are susceptible to noise and are
prepared to operate on uncertain and not fully observable
environments, debugging approaches emerging from the
robotics community have focused in accommodating these
characteristics. Khalastchi et al [11] provides a taxonomy of
the techniques for fault detection and diagnosis in robotic
systems that includes: model-based, knowledge-based, and
data-driven approaches. One such model-based technique is
that of Stavrou et al. [16], which operates from an a priori
model to detect actuator faults on differential-drive mobile
robots as they operate in a controlled environment.Popular
knowledge-based approaches involve causal modeling or ex-
pert systems. Hamilton et al. [9], for example, use modeling
in their recovery fault diagnosis system for autonomous
mobile robots that incorporates knowledge by way of robot
design, sensor data, historical and mission information, and
fault knowledge gathered from field experts. Among the
data-driven techniques, Fagogensis et al. [4] use a machine
learning model to detect actuation failures. The domain-
specificity makes these techniques powerful for robotics, or
at least for the kind of robots they target. Yet, none of
them focus on environment reduction. The technique we
proposed is thus orthogonal and complementary to this body
of approaches.

Overall, we find that while software approaches to de-
bugging have seen dramatic leaps towards automated in the
last decades, they do not directly translate to the context
of debugging robotics failures. And while approaches from
the robotics community have the advantage to be domain-

specific, they seem to have overlooked the problem of
automated environment reduction. We aim to merge the ad-
vantages of these two contexts in our environment reduction
framework for robotics.

III. APPROACH

Given an environment E comprised of elements
{e0, ..., en} where robot R testing fails with failure f , the
objective of our approach is to reduce E to E′ such that:

E′ ⊂ E ∧ test(R,E′) = f ∧ E′ is 1-minimal (1)

The test operation may induce the original failure f , a
pass p, or cause a different failure f ′ (E′ can cause R to fail
in other ways). The 1-minimal failure inducing environment
E′ is one where:

∀ei ∈ E′, test(R,E′ − ei) 6= f (2)

That is, we seek to reduce the original failure inducing
environment E to a 1-minimal environment E′ ⊂ E where
removing any single element ei will not result in f . Just like
delta debugging, we aim to detect a 1-minimal since finding
a global minimal E′ can be prohibitively expensive.

Central to such reduction is the operation red(E), which
removes elements ei...ej from E to render E′. Two unique
aspects of red(E) for robotic environments are worth high-
lighting. First, the elements of E in robotics are not just
types in the cyber world; they are not just ints or floats,
or parts of a grammar. Instead, they are entities in the real
world that have physical properties, and spatial and temporal
dependencies. When our approach partitions the environment
and prioritizes what partitions to remove, it is cognizant
of such properties and dependencies. Second, due to the
robot’s inherent sensing, estimation, and actuation noise,
test executions of robot systems can exhibit a high-degree
of variability, with the corresponding variation in failure
exposure. Borrowing from the software testing literature we
call these flaky tests, and they can severely limit existing
fault isolation approaches, making them skip parts of the
environment that matter. Our approach is parameterizable by
the number of test re-executions to improve the chances to
expose non-deterministic failures, mitigating this challenge.

A. Detailed Approach

Algorithm 1, ddenv for robotics, takes in the robot under
test R, the environment it is being tested in E, a partitioning
and prioritization schema as well as starting number of
partitions (to be discussed later), and the original failure f .
The algorithm also takes two parameters, timeout (dflk-to)
and iterations (dflk-it), that define the deflaking scope.

The algorithm implements a depth-first search for the first
1-minimal environment it finds. As shown in lines 3 and 4,
the partitioning and prioritization of sub-environments are
abstracted into their own functions. We cover some of them
in Table I and Algorithms env partitioning and prioritization
by failure-proximal.

After the original environment E is partitioned and or-
dered, the robot is tested under each subenvironment E′. If



Name Description

Pa
rt

iti
on

in
g model2model Spatial-proximity of models based on k-means clustering.

timeseg Evenly subdivide trajectory by timestamp and length of execution.
trajectoryseg Trajectory-partitioning into segments based on changes in angular velocity > delta.
learner Dynamic learner trained to detect failures from a feature vector.

Pr
io

ri
tiz

at
io

n

random Subenvironments prioritized in random order.
sequential The order in which subenvironment elements were added to the original environment.
failure-proximal Proximity of the centroid of partitions to the failure pose of the robot.
avg. trajectory-proximal Average proximity of the centroids of partitions to robot trajectory.
min. trajectory-proximal Minimum proximity of the centroids of partitions to robot trajectory.
timestep Timestep at which any model in the environment was sensed on the previous run.

TABLE I: Partitioning and prioritization schema.

required, the result is deflaked between lines 5 to 10. The
resulting artifacts are adjudicated as being the same as failure
f induced by the original environment, a distinct failure
f ′, or successful run p. This process assumes that test data
enables such determination. For example, in our study, the
reported failures include the final pose and time of the robot
in E′ which allows us to determine whether they are f or
f ′.

Algorithm 1: ddenv algorithm for robotics
Input: R, E, f , part schema, prior schema, n partitions, dflk-it,

dflk-to
Output: E′

1 1-minimal ← False;
2 while ¬ 1-minimal do
3 Subenvironments← partition(E, f , n partitions, part schema);
4 Subenvironments ← prioritize(Subenvironments,

prior schema);
5 for s in Subenvironments do
6 result ← test(R, s, dflk-to);
7 if is new failure(result, f ) or is success(result) then
8 distribution ← deflake(s, R, dflk-it, dflk-to);
9 result ← is similar failure(distribution, f );

10 end
11 if result == f then
12 E ← s;
13 break;
14 end
15 n partitions ← n partitions + 1;
16 if result != f and n partitions == E.size then
17 E′ ← E;
18 1-minimal ← True;
19 else if n partitions > E.size then
20 n partitions ← E.size;
21 end
22 end
23 return E′;

As discussed earlier, the uncertainty introduced by the
robot sensors, algorithms, actuators, the environment, and the
simulator means that the system can produce a dissimilar
run even on the original environment. Thus, the algorithm
conservatively assumes that tests producing f ′ or p are
potentially flaky, reruns them dflk-it times, and the results
are re-evaluated against f .

Whether or not a new 1-minimal environment has been
found, the partition granularity is incremented (line 15)
and a stopping condition for whether f is produced by a
subenvironment is checked (line 16). The stopping condition
for determining a 1-minimal environment checks whether

the current set of sub-environments produced only dissimilar
results to the original and whether there was no further
opportunity to increase granularity of the partitioning.

B. Partitioning and Prioritization Schemas

Our partitioning and prioritization schemas leverage the
spatial-temporal relations of robotic systems to more effec-
tively prune the environment. We have developed a family
of schemas, but due to space constraints we only provide
two algorithms as examples. Algorithm env partitioning for
partitioning the environment based on the model and trace
physical attributes, and their relationship to each other, and
Algorithm prioritization by failure-proximal for prioritiza-
tion based on time proximity to failure.

Algorithm 2: env partitioning
Input: E, n clusters, trace, attrib type
Output: environment clusters

1 for model in E do
2 if attrib type == pose then
3 model.attrib ← model.pose;
4 else if attrib type == time first sensed then
5 model.attrib ← compute timestep(model.pose, trace);
6 else if attrib type == distance to trajectory then
7 model.attrib ← compute dist(model.pose, trace);
8 else if attrib type == ... then
9 model.attrib ← ...;

10 end
11 end
12 environment clusters ← kmeans(E, n clusters, axis=attrib type);
13 return environment clusters;

Algorithm env partitioning shows a k-means clustering
of e ∈ E based on their attributes. The attributes of the
chosen type are first collected from each model appearing
in the test trace. Since the elements in the environment are
often referred to as models in popular simulators, we will
use that label for this partitioning. Intuitively, clustering is
meant to group elements or models in the environment that
are close to each other. In our implementation we use the
pose of the models as the attribute type, but the algorithm
could support other types like clustering by the velocity for
example when working with multiple dynamic models. We
elected to use k-means because it is an explainable technique,
requires a relatively low amount of data to perform well, and
is effective at clustering based on spatial attributes. We also
developed a temporal partitioning scheme based on k-means
that we call timeseg. This partitioning schema splits the robot



trajectory, from the start to the failure, based on the temporal
distance to the failure. The intuition is that elements closer
in time to the failure are more likely to have induced the
failure. The elements are clustered according to the timestep
at which they are first sensed by the robot.

In terms of prioritization, Algorithm prioritization by
failure-proximal is meant to order the elements spatially
proximal to the crash pose of the robot, as they are expected
to have a greater influence in inducing the failure. Distance
is calculated in three dimensions due to many environments
having a height component to them, such as hills and terraced
surfaces, and for robots able to plan and actuate along the
z-axis.

Algorithm 3: prioritization by failure-proximal
Input: environment clusters, f
Output: ordered environments

1 crash pose ← get crash(f );
2 for cluster in environment clusters do
3 dist ← calc distance 3D(cluster.centroid, crash pose);
4 cluster.distance from crash ← dist;
5 end
6 ordered environments ← sort by distance(environment clusters,

sortAttrib=distance from crash);
7 return ordered environments;

Table I lists some of the partitioning and prioritization
schema we developed. As we have seen, model2model par-
titions the environment based on the spatial relationships
between elements in the environment. Timeseg and trajec-
toryseg partition aspects of the robot execution in relation
to the time they occurred or the proximity to the trajectory
of the robot. Learner synthesizes all three by applying
feature learning to a vector containing the attributes of
the previous three partitioning schema. As per prioritization
schema, random and sequential involve no information from
the environment. Failure-proximal orders partitions by the
minimum distance from the partition centroid to the failure
pose of the robot. Minimum trajectory-proximal ordering
finds the minimum distance from the partition centroid to
any point on the trajectory and average trajectory-proximal
ordering weights the trajectory according to the average
distance of the centroid from the trajectory over the course
of system execution. Timestep ordering leverages the time
series nature of the system execution to sequentially order
elements by the first timestep in which they are sensed by
the system.

C. Limitations

The application of the approach requires for the failing
test scenario to provide access to its models so they can
be manipulated as part of the debugging process. As the
accessibility to the models is diminished, so is the approach
capability to reduce the environment. The reduction also
relies on repeated test executions, making the approach
particularly suitable for debugging in simulation.

The deflaking process assumes that the failure is present
in a failure-inducing environment at least 1

dflk−it of the time.

Lower probabilities of f can cause ddenv to ignore valuable
partitions, leading to missed reduction opportunities.

Some of the partition and prioritization algorithms build
upon the assumption that the elements in the environment are
static (constant pose) to derive spatio-temporal relationships.
Environments with dynamic objects would render those
algorithms inadequate. Small adjustments to such algorithms
to compute, for example, the minimal distance from an
element to the robot during a test could help to overcome
such limitations. Still, more sophisticated notions of spatial
dependencies such as those capturing whether two robots are
moving towards or away from each other could render even
better information for partitioning and sorting and will be
the focus of our future work.

D. Implementation

We implemented 3 instances of the approach to automati-
cally simulate the reduction and generation of environments
for the Gazebo simulator [5] and collect test metrics. The
Gazebo simulator is an environment-building and simulation
tool with hooks to Robot Operating System (ROS) [6] and for
which models of many popular ROS robots are maintained
and widely used. In the Gazebo parlance, environments
consist of compositions of discrete objects with configurable
attributes, termed models.

These instances of the approach differ in their combina-
tion of partitioning and prioritization schema. Model2model
partitioning was combined with two different prioritization
schema, failure-proximal and average trajectory-proximal.
The prioritization schema with the best performance, failure-
proximal, was combined with the timeseg partitioning
schema. The reduction was automated through scripts that
trigger test runs, partitioning and prioritization, environment
reduction, and an oracle to perform failure analysis.

IV. STUDY

We have applied our approach to the Husky ground
vehicle [15] and deployed it into three scenarios to explore
the potential of our approach to simplify the environment
associated with a failure. Our research questions are:
• RQ1: How cost-effective is our approach in reducing

the size of the environment that led to a failure?
• RQ2: How do variations of partitioning and prioritiza-

tion schema affect cost-effectiveness?
We measure cost-effectiveness as the tradeoff between

environment reduction and the number of and wall-time for
tests executed.

A. Setup

To answer these questions, we have designed three scenar-
ios and configured the Husky to run within them. The Husky
was chosen for its use as a generic ground vehicle suited for
many environments and appendant open source navigation
packages. This system and scenarios were evaluated under
the Gazebo simulator. Three pairs of partitioning and prior-
itization schemas were chosen from Table I to test our 1-
minimal environment reduction approach on three scenarios.



(a) Ditch scenario failure; husky is stuck
in ditch between spawning position and
goal.

(b) Rubble scenario failure; husky is
caught atop a cinderblock.

(c) Friction scenario failure; husky can-
not navigate precisely enough to pass
between the barrels.

Fig. 1: Three failing scenarios

We begin ddenv with n partitions=2 and dflk-it=3. Enums
for partitioning and prioritization schema are provided as pa-
rameters, conforming to three schema pairings, model2model
and failure-proximal, model2model and average trajectory-
proximal, and timeseg and average trajectory-proximal.

We selected three scenarios that bring distinct contexts
and failure occurrences in robotic environments. Each test
scenario has a timeout of 45 seconds to reach its goal. The
first scenario depicted in Figure 1a, labeled as ditch, consists
of 43 models with two asphalt planes with a 1m wide, 2m
deep gap between them and patches of static rough terrain
on each plane. When approach at the right angle, the gap
presents a high probability for the robot to get irretrievably
stuck. The Husky uses just its compass, IMU, and odometry
data to navigate.

The second scenario depicted in Figure 1b, labelled as
rubble, consists of 36 models, with a pile of dynamic 2x4
boards with a narrow, cluttered path through the rubble.
There are two cinder blocks in the narrow path supporting
two boards each. The robot is given a goal that forces it to
navigate a path through the rubble, but it often gets stuck on
the hidden cinder blocks such that no wheel is touching the
ground. The Husky uses its lms1xx laser scanner, compass,
IMU, and odometry data to navigate from one plane to
another.

The last scenario depicted in Figure 1c, labelled as fric-
tion, consists of 25 models with a surface covered in patches
of terrain with varying friction coefficients. The friction
coefficient of the red patches is 1000 times greater than
those of the green patches which are set to µ=1, and the
friction coefficient of the asphalt plane that they are set into
is µ=100. The robot is given a goal that forces it to navigate
between narrow openings between the construction barrels.
Due to the changes in friction of the patches it traverses
before attempting to going through the barrels, the control
module might not able to line up the robot properly and it
frequently gets stuck in the opening.

Partitioning
and Prioritization # Tests %Reduction Time

(min)

di
tc

h

model2model,
failure-proximal 268 84% 420

model2model,
avg. trajectory-proximal 82 95% 108

timeseg,
avg. trajectory-proximal 359 84% 487

ru
bb

le
model2model,
failure-proximal 179 81% 274

model2model,
avg. trajectory-proximal 178 78% 277

timeseg,
avg. trajectory-proximal 162 89% 231

fr
ic

tio
n model2model,

failure-proximal 727 44% 1098

model2model,
avg. trajectory-proximal 116 76% 183

timeseg,
avg. trajectory-proximal 430 68% 641

TABLE II: Scenario reduction results by schema.

B. Results

Table II groups results by scenario.1

The ditch scenario results show all techniques provide a
reduction of at least 84%, meaning only 7 of the 43 models
are retained. Results in Table II were comparable for the
first and third techniques and saw the greatest reduction
in environment and runtime in the second technique. The
model2model clustering and averaged trajectory-proximal
ordering schemas’ strong performance is attributable to the
fact that it incorporates a greater amount of failure infor-
mation about the failure and captures the rough terrain that
perturbs actuation of the Husky before a catastrophic failure
is induced by the ditch. Because this schema prioritizes
models by proximity to the trajectory, the raised plane and
raised patches of rough terrain on the opposite side of
the ditch are retained, whereas the model2model+failure-
proximal and timeseg+averaged trajectory-proximal tech-
niques respectively do not retain the asphalt plane because
its center point is far from the crash, or because the robot
spends most of its time stuck in the ditch which is, again,

1Access the implementation at: github.com/MissMeriel/DDEnv



far from the center point of the asphalt plane.
Figure 2 shows the reduction in the environment size for

all three techniques. The steep dropoff in the first iterations
indicates that large partitions are removed from the envi-
ronment and the environment was still able to produce a
failure. The techniques’ different partitioning and prioriti-
zation schema lead them to remove different parts of the
environment, reaching their 1-minimal E′ at different stages
in their exploration. Still, all three reduced the environment
to less than 25% in just 8 iterations. The resulting 1-minimal
reduction of the ditch environment for model2model+failure-
proximal is shown in Figure 3.

The rubble scenario has comparable results using the
first two schema pairs in Table II, with improved runtime
and deflaking performance. The best technique in terms
of runtime and reduction was timeseg partitioning. This
schema was designed to leverage the temporal proximity
to the failure. The rubble scenario performed well with
this segmentation because the Husky quickly gets stuck on
the rubble and, after the failure occurs, remains stuck until
timeout, thus proportionately weighting the pieces of rubble
that cause the failure. Because so much of the environment
surrounding the crash and trajectory is occupied by rubble,
model2model+failure-proximal and model2model+averaged
trajectory-proximal would include slightly more elements
than necessary, showing smaller increments in environment
reduction.

The three techniques provided significant gains in
the friction scenario. We also note that Table II
shows the model2model+failure-proximal technique re-
quired the longest time, but the second shortest time
for model2model+averaged trajectory-proximal which con-
verged quickly. This variation is explained by the mismatch
between the failure scenario and some of the schemas. The
failure-proximal ordering caused a poor performance because
the friction scenario is designed to exhibit ongoing system
impedance that eventually leads to a failure condition. That
is, the issues leading to the failure arise earlier in the test.
Instead, the averaged trajectory-proximal ordering takes in
the entire weighted trajectory, which is a better match for
this scenario. Also note that model2model is better suited for
this scenario than timeseg, which generates model partitions
based on time because the failure is associated with events
that happen through the test. This scenario also required the
most deflaking of them all, which is not surprising given its
complexity.

Considered as a portfolio of reduction techniques, our
approaches can offer 78% reduction on average across all
scenarios. In practice, this means that the engineer debugging
the robot system can focus on a much smaller portion of the
environment, leading to more precise hypothesis about the
source of the failure, with shorter bags of data to analyze,
resulting likely in an accelerated debugging process.

V. CONCLUSIONS

This research introduces the first approach for environment
reduction with the use of physical and temporal knowledge

Fig. 2: Reduction in number of models per environment over
iterations of three techniques for ditch scenario.

Fig. 3: 1-minimal environment for ditch failure reached from
model2model partitioning and averaged trajectory-proximal
ordering.

unique to robotic systems. The study highlighted the po-
tential value of the proposed approach to assist the robot
debugging process. Our findings open up many avenues
for continued study. Firstly, we would like to apply our
approach to larger and more complex environments that
include dynamic obstacles to better understand the tradeoffs
and optimizations between reduction, runtime, and number of
tests. Second, there are several other sources of information
that we seek to exploit. For example, an analysis of the
likeliness of multiple failures found by the approach can
provide further partition and prioritization insights. Third,
we can dramatically improve the efficiency of the approach
by adding early cutoffs based on preconditions that environ-
ments must keep, such as the robot spawn location, to hasten
the reproduction of the failure.



REFERENCES

[1] Kevin Boos, Chien-Liang Fok, Christine Julien, and Miryung Kim.
Brace: An assertion framework for debugging cyber-physical systems.
In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, page 1341–1344. IEEE Press, 2012.

[2] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread
schedules. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’02, page
210–220, New York, NY, USA, 2002. Association for Computing
Machinery.

[3] H. Cleve and A. Zeller. Locating causes of program failures. In
Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005., pages 342–351, 2005.

[4] G. Fagogenis, V. De Carolis, and D. M. Lane. Online fault detection
and model adaptation for underwater vehicles in the case of thruster
failures. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 2625–2630, 2016.

[5] Open Source Robotics Foundation. Gazebo robotics simulator. http:
//gazebosim.org, 2019.

[6] Open Source Robotics Foundation. Robot operating system. https:
//www.ros.org/, 2019.

[7] Florian Gross, Gordon Fraser, and Andreas Zeller. Search-based
system testing: High coverage, no false alarms. In Proceedings of
the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, page 67–77, New York, NY, USA, 2012. Association for
Computing Machinery.

[8] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Lo-
cating faulty code using failure-inducing chops. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, page 263–272, New York, NY, USA, 2005.
Association for Computing Machinery.

[9] K. Hamilton, D. Lane, N. Taylor, and K. Brown. Fault diagnosis on au-
tonomous robotic vehicles with recovery: an integrated heterogeneous-
knowledge approach. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.01CH37164), vol-
ume 4, pages 3232–3237 vol.4, 2001.

[10] Brittany Johnson, Yuriy Brun, and Alexandra Meliou.
http://people.cs.umass.edu/brun/pubs/pubs/Johnson20icse.pdfCausal
Testing: Understanding Defects’ Root Causes. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE),
Seoul, Republic of Korea, May 2020.

[11] Eliahu Khalastchi and Meir Kalech. On fault detection and diagnosis
in robotic systems. ACM Comput. Surv., 51(1), January 2018.

[12] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu.
Rvfuzzer: Finding input validation bugs in robotic vehicles through
control-guided testing. In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, page 425–442, USA, 2019. USENIX
Association.

[13] Ghassan Misherghi and Zhendong Su. Hdd: Hierarchical delta debug-
ging. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, page 142–151, New York, NY, USA, 2006.
Association for Computing Machinery.

[14] Changhai Nie and Hareton Leung. The minimal failure-causing
schema of combinatorial testing. ACM Trans. Softw. Eng. Methodol.,
20(4), September 2011.

[15] Clearpath Robotics. Husky unmanned ground ve-
hicle. https://clearpathrobotics.com/
husky-unmanned-ground-vehicle-robot/, 2019.

[16] D. Stavrou, Demetrios G. Eliades, C. Panayiotou, and M. Polycarpou.
Fault detection for service mobile robots using model-based method.
Autonomous Robots, 40:383–394, 2016.

[17] William N. Sumner and Xiangyu Zhang. Comparative causality:
Explaining the differences between executions. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13,
page 272–281, 2013.

[18] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineer-
ing, 42(8):707–740, 2016.

[19] Andreas Zeller. Yesterday, my program worked. today, it does not.
why? SIGSOFT Softw. Eng. Notes, 24(6):253–267, October 1999.

[20] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, February
2002.


