
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Beyond DNN Silo-Testing: Integrating Autonomous System State
Anonymous Author(s)

ABSTRACT
Adversarial testing tends to focus on DNNs in isolation, to the ex-
clusion of the full system state and system behaviors resulting from
sequences of DNN output. In this work we propose a more holistic
approach to DNN testing that accounts for the effects of perturba-
tions on the system state. Our insight is that, when an adversarial
perturbation is situated in the environment and encountered by
the system, the way it is sensed and processed by the system de-
pends on system state. Our approach involves three key elements:
1) integration of simulator into the testing process to update state,
2) optimization of perturbation over time, and 3) fitting pertur-
bations to sequences of inputs consistent over spatio-temporally
ordered states. These ideas lay a foundation for the testing of sys-
tems with DNNs that rely on spatio-temporally related inputs. We
illustrate the potential of our idea through adversarial perturbation
of the physical environment of an autonomous vehicle. We define
a broader research agenda around this more holistic DNN testing
approach that accounts for system state.

ACM Reference Format:
Anonymous Author(s). 2022. Beyond DNN Silo-Testing: Integrating Au-
tonomous System State. In Proceedings of The 44th International Conference
on Software Engineering (ICSE 2022). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Autonomous systems are becoming ubiquitous. We live with cars,
drones, vacuum cleaners, and warehouse robots, operating with
higher and higher levels of autonomy. In spite of their ubiquity,
autonomous systems’ potential is often hampered by a susceptibility
to misbehavior. For example, Tesla self-driving cars have shown a
propensity to crash into emergency vehicles when their lights are
flashing [14] or to interpret the full moon as a yellow traffic light
and slow down without warning [15]. Such events highlight the
importance of thoroughly testing these systems. More specifically,
since the software supporting such autonomy increasingly relies
on deep neural networks (DNNs) to encode behavior that would be
very difficult to develop through traditional programming, testing of
DNNs is now critical. This is reflected in the effort our community
has allocated to such work [1, 3, 6–9, 11, 12, 16, 17, 20, 21, 23–
28, 30, 32, 33].

Today, most testing efforts for the DNNs driving these systems
operate in a silo, targeting the DNN in isolation without consider-
ing dependencies with the full system state. Such approaches are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Vehicle driving by a roadside billboard.

effective at determining the robustness of the network to typical or
adversarial contexts [13]. For a DNN generating a steering angle
for self-driving vehicle, silo-testing might help to judge the DNN’s
ability to correctly predict steering angle on images of an unfamiliar
road or on images with environmental noise for which it was not
explicitly trained. However, it will miss cases in which the evolving
state of the system has an unexpected effect on the input of the
DNN, leading to sometimes-catastrophic system misbehavior. For
example, a vehicle under test may accelerate around a curve at
rapidly increasing velocity. Environmental blurring of the input
images has been tested and accounted for to not disrupt steering
predictions. However, the acceleration causing the blur makes the
vehicle incapable of turning sharply without losing control past
some velocity threshold.

In this work we hypothesize and later show that the complex
spatial-temporal dependencies of these autonomous systems to
their execution environment make existing testing techniques in-
sufficient. Hence, instead of DNN silo-testing, we advocate for
testing of DNNs to take into account the system state. This means
that the system state must reflect the changes caused by the test ex-
ecution (i.e., if the DNN generates a steer angle the car must adjust
its steering), and it also means that the the next input to the DNN
will depend on the updated system state (i.e., the steered car now
senses a different image than it would without the steering). The
core idea is to include, as part of the testing process, how the DNN
output affects the system state and how the system state affects the
next round of inputs to the DNN.

Next, we provide a motivating example to illustrate how account-
ing for system state can dramatically affect testing results. Then,
we sketch an approach to show what it would take to incorporate
system state into the test generation process. Last, we briefly ex-
plore the potential of the proposed approach and find that it can
detect more than three times the failures than a state-of-the-art
technique, and present a broader research agenda.

2 MOTIVATION
Consider a self-driving car on a road with turns, lane markers,
vegetation, and billboards like that in Figure 1. A camera mounted
on the vehicle collects images at 30 fps. A DNN then consumes

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

each of those images to produce a sequence of inputs to steer the
car [5]. However, such DNNs are prone to adversarial inputs that
may cause misbehaviors [2].

One way to attempt to detect misbehaviors like this is through
adversarial testing. The state of the art in adversarial image genera-
tion takes individual images from a data set, applies some changes
that should not affect the DNN output or affect it in known ways,
and compares the DNN output for the original and the perturbed
image [10]. For example, DeepXplore [18] generates adversarial
perturbations using gradient ascent that vary a minimal number of
pixels. DeepRoad [31] applies changes that mimic certain weather
conditions. DeepHunter [29] aims to make changes that preserve
the key features, like changing the image on a billboard would
preserve the road in the driving environment.

Such techniques, however, have a fundamental limitation: the
tests do not account for how the system functions and the space of
possible changes to system state as a result of the DNN input. For
example, a real-life malfunction might result in one dead pixel in the
image, but that dead pixel will be in a fixed location for the entirety
of the car’s test run. Thus, adversarial tests that render different
adversarial pixels on per-image bases for different images are not
physically realistic for the system. Furthermore, a dead pixel that
causes a large difference on one image may not have a significant
effect on a system as it is corrected by the next captured image or
it is attenuated by a constraint imposed by the system state. This
makes single-image test error measurements less meaningful in
terms of how the perturbation will ultimately affect the system
behavior.

DeepBillboard [33] took a first step in accounting for system
state changes by considering a sequence of images from the vali-
dation set where a car drives past a billboard, similar to Figure 1.
DeepBillboard then performs an optimization to generate an ad-
versarial billboard (the perturbation) that maximizes steering loss
on all of those images. This produces an adversarial perturbation
that can be placed in an environment and be applied to consecutive,
physically consistent images. However, this technique has a major
weakness: it operates on a stale state. That is, the optimization
procedure operates on images collected under normal driving, not
accounting for the effect of perturbed actuation on the system state
in later timesteps.

To enable the capture of system live-state for test generation,
we propose to embed a simulator into the adversarial generation
cycle such that the collection and generation phases are interleaved.
Having a simulator in the loop, with additional functions to keep
the perturbation consistent over time, we are able to enact the
perturbation as we generate it to update the system state, while si-
multaneously gathering input constraints to constrain the effects
of the perturbation to physically possible inputs to the system.

Figure 2 illustrates the implications of using a live-state technique
to generate adversarial billboards using an input image sequence
of length N. The image sequences resulting from the two collection
trajectories are shown at the bottom of the figure. The features of
the images, such as lane markers, vegetation, obstacles, and vanish-
ing point of the road at time 𝑡0 are similar between techniques, but
deviate significantly in later timesteps 𝑡𝑖 and 𝑡𝑁 reflecting the dif-
ferent system states (different poses which leads to different images
being captured). The state-stale technique generates a billboard

Figure 2: Input images for a stale-state perturbation versus
a live-state perturbation and resulting trajectories. Account-
ing for live-state leads to a crash.

using the input sequence from following a normal trajectory in the
collection phase (blue solid line), which causes the test run (blue
dotted line) to barely drift from the normal trajectory, as the pertur-
bation stops working on images collected under the new state. The
car ultimately returns to a normal trajectory. When incorporating
system live-state, state is updated such that the effects of the per-
turbation are reflected in the system state as seen in the live-state
sequence of images outlined in red at the bottom of Figure 2. As a
result, the test trajectory (red dotted line) closely mimics the collec-
tion trajectory as the vehicle state is kept up-to-date and does not
drift out of phase from the collection trajectory.

3 APPROACH
Our goal is to generate perturbations situated in the environment
that account for system live-state over space and time in order to
cause undesirable behaviors.

Figure 3 provides an overview of the approach applied to the
motivating example. The critical components are the Generator
of Perturbation over a State Sequence (GPSS) and the simulator.
First, the simulator captures the system live-state, including the
image sensed by the system and the most recent steering input in
the case of the motivating example. Second, this state is added to
the sequence of images and input constraints. Third, GPSS uses
the updated sequence, DNN, and a goal state, such as “hard left
turn”, to update the perturbation and pursue that goal state in the
next timestep. Fourth, the generated perturbation is injected into
the simulator. The process is then repeated, with the simulation
stepping forward a timestep using as input 𝜃 ′𝑡 to produce an updated
𝜃𝑡 informed by the limitations of the system in its current (live)
state. The process is repeated until some stopping criteria is reached
– in this case, that the billboard is out of view or a crash occurs –

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Beyond DNN Silo-Testing: Integrating Autonomous System State ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: Overview of approach

and a perturbation (final billboard), incorporating constraints from
the entire sequence, is obtained and ready for testing.

3.1 Simulator
The simulator is integral to the success of the proposed approach.
We assume it has enough knowledge of the system state and the
test environment to render relevant state changes. The simulator
updates the system at each timestep to maintain a system live-state,
consistent with the sensed input from the environment, the DNN
commands, and the previous system state.

Note that, given a DNN command, the simulator ensures that a
system input influenced by the perturbation is bounded by
the system states reachable from the current live state. This
is advantageous over existing testing approaches that consider the
DNN in isolation because the DNN outputs may be curtailed by the
system capabilities (e.g., a steering angle can only change so much
in a time frame). More formally, at any timestep 𝑡 in the sequence:

𝜃𝑡 = 𝑠𝑦𝑠𝑡𝑒𝑚.𝑠𝑡𝑎𝑡𝑒.𝑏𝑜𝑢𝑛𝑑 (𝜃 ′𝑡) (where 𝜃 ′𝑡 = 𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑡))
(1)

3.2 GPSS
Generating a perturbation over input sequences must account for
two properties. First, the perturbation must maximize state
change toward the goal state. Given an image img, a perturbation
pert, a DNN that governs the behavior of the system, an input x and
the output of the DNN given that input DNN(x), and a loss function
L of the difference in DNN commands engendered by img+pert:

𝑎𝑟𝑔𝑚𝑎𝑥
𝑝𝑒𝑟𝑡𝑡→𝑔𝑜𝑎𝑙

(L(𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡)), (𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑡))) (2)

Second, the resulting perturbationmust be consistent over
time and space. As the current state of the system depends on the
successful early application of perturbation, the perturbation update
must maintain the validity of those previous states. Moreover, we do
not want to sacrifice the effect of perturbation achieved in previous
steps for the sake of maximizing the current perturbation. The input
constraint sequence provides a record of how to direct loss when
optimizing the current perturbation. Given the final perturbation

(the final version of the billboard) 𝑝𝑒𝑟𝑡𝑁 , the next equation enforces
that the input constraint sequence is maintained such that the
resulting input sequence to the DNN stays consistent across all live
states of the sequence:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑝𝑒𝑟𝑡𝑁

(
∑
𝑡

L(𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑁), 𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑡))) (3)

These properties are enforced jointly at every step of the pertur-
bation generation in relation to previous and subsequent system
and environment states through minimization of the loss function.

3.3 Implementation for Autonomous Vehicle
For instantiating our approach for an autonomous vehicle, we use
a DNN-steered vehicle operating in BeamNG [4], a high-fidelity
soft-body physics simulator for realistic driving and vehicle damage.
This simulator provides access to the car state, including its steering
angle and sensed images. The simulator also enables enacting a
perturbation in the environment at each timestep.We can command
the simulator to spawn the vehicle on a trajectory near the source
of perturbation in a variety of roads and scenarios. The DNN we
use takes in an image collected from the simulator to determine the
steering input to the car. Those images encode the system state of
the car (e.g., how close it is to the edge of the road, whether it is
currently navigating a turn).

We used a billboard to act as the source of perturbation, 𝑝𝑒𝑟𝑡 .
Here, the delta between next reachable states in Equation 2 is de-
fined in terms of difference in steering angle after perturbation has
been applied towards the steering angle goal state. To maximize
the state delta as defined in Equation 2 and make an analogous
comparison to DeepBillboard, we chose to run the car off the road.
This consisted of maximizing steering to the left or right as much
as possible at every step. We chose to turn towards the source of
perturbation (i.e., the billboard) to allow for the perturbation to
stay in sight of the onboard camera longer and give the perturba-
tion a longer window to run the car off the road. Once the vehicle
is spawned, the approach collects an image and a steering angle
from the simulator to be added to the sequence of inputs, and per-
forms joint loss optimization to enforce a constraint sequence on
DNN output satisfying Equations 2 and 3. An input constraint 𝜃𝑡
constrains the steering input of the vehicle according to possible
range of actuation at a given system state according to Equation
3. Then, temporary billboard 𝑝𝑒𝑟𝑡𝑡 is injected into the simulated
environment, and the simulator is stepped forward by one timestep,
updating the state of the vehicle. As the car nears the billboard, it
increases in size in the image, and as the orientation of the onboard
camera changes in relation to the billboard, the billboard warps
to accommodate the change in perspective to satisfy Equation 3.
This process is repeated until the onboard camera loses sight of
the billboard and our technique produces a billboard with the full
sequence as the end product of our approach. To test our approach,
we then inject that billboard into the driving environment, and
execute test runs with the vehicle starting from the same starting
point to compute the crash rate caused by the perturbed billboard.

4 EXPLORING THE APPROACH POTENTIAL
We now begin to explore the potential of the approach to cause
system failures in the limited context illustrated in Section 2. More

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(a) DeepBillboard.

(b) Proposed Approach.

Figure 4: Effect of billboard perturbation for Deepbillboard
and our approach. Road is defined by orange lines, the bill-
boards are in red, the thick blue line is the normal trajectory,
and the green thick line is the collection trajectory.

specifically, the testing subject is an autonomous Jeep-like vehicle
operating in the BeamNG simulator [4]. It utilizes a DAVE2 network
[5, 22] converted to pytorch [19] that consumes camera images to
steer the vehicle around a racetrack. As trained, without external
influences, the system is able to navigate close to the centerline of
a given target race-track indefinitely.

The adversarial testing process aims to expose configurations
for a billboard next to the road that would cause a vehicle crash.
A reason for exploring this particular context is that it is one of
the few that has a state-of-the-art technique for it in Deepbillboard
[33]. Deepbillboard and the proposed approach depend on many
parameters such as the billboard size and location, the features of
the portion of road, the camera resolution and rate, and the different
adaptations of the loss function. The proposed approach has even
more parameters such as weighting of the sequence. At this stage
we have only sampled that space of variables, but among the tens of
cases we explored we found that the proposed approach causes
crashes in over 70% of the runs while Deepbillboard is only
able to cause crashes in 20% of the runs.

Figure 4 depicts a typical set of results from DeepBillboard and
the proposed approach using the same parameters. The orange
lines depict the road, with the axes showing the dimensions of
the driving environment in meters. Both approaches to generate
the billboard perturbation were designed to pull the car towards a
billboard situated on the left-hand side of the road. We executed a
set of 10 tests utilizing the billboard from each approach to account
for random variation introduced by the simulator. DeepBillboard,
Figure 4a, shows a high variance of tests paths, with two of them
ending in a crash and the remaining eight returning to the normal
trajectory. This confirms our intuition about the impact of not
accounting for system state. As the perturbation takes effect and
the collection sequence and test sequence diverge, the perturbation
becomes less effective and the car returns to the expected trajectory.

Our approach, Figure 4b, has lower variance and greater preci-
sion. Seven of the ten test runs ended in a crash into a structure
along the left-hand side of the road. These seven runs closely fol-
low the collection trajectory, shown in green. The remaining three
test runs return to the normal trajectory. We speculate this is due
to noise from the simulator causing the car to miss those early
perturbation steps, which in turn causes the image sequence to
deviate further and further from the collection sequence and the
perturbation to cease to affect the image sequence under test.

5 BROADER RESEARCH AGENDA
This work points to the need for a broader research agenda on
testing DNNs that is more holistic in considering the system state.
In particular, we believe three directions require more attention.

Technical challenges. The prototyped loss functions are rather
primitive. They do not account, for example, for the different influ-
ences of state across a sequence (i.e., earlier images should affect
the perturbation more than later ones) or for the transfer potential
of the pertubation to other contexts (i.e., the same billboard on a
different road). They also ignore the cost of the proposed approach.
Iteratively capturing the system state and applying gradient ascent
at every step slows down test generation by an order of magnitude.
Techniques are needed to make the approach more efficient.

Characterizing a Complex Space of Factors. There are many
and often confounding factors that may affect the success of our ap-
proach. These factors include DNN architecture (i.e., certain layers
being more amenable to analysis), system attributes and constraints
(i.e., the steering angle depends on the system steer state), scenario
attributes (i.e., system initial velocity, straight versus curved road),
and perturbation space (i.e., billboard size and placement). This will
require extensive empirical studies to draw principles that guide
how to best configure the approach parameters to cause crashes.

Beyond Perturbing Billboards to Crash Cars. In the context
of autonomous vehicles, there are countless opportunities to inject
adversarial perturbations (e.g., license plates, road decals, graffiti).
However, the approach is not limited to this type of systems. A
drone localizing a target or a robot arm analyzing the orientation of
an object both rely on the interpretation of images to accomplish a
task. These emerging systems with rich states would be appealing
targets for the proposed approach. Furthermore, perturbations do
not have to be adversarial; they can be designed to cooperate with
the system to, for example, navigate a hairpin curve.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Beyond DNN Silo-Testing: Integrating Autonomous System State ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2019. Black Box Fairness Testing of Machine Learning Models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
625–635. https://doi.org/10.1145/3338906.3338937

[2] Naveed Akhtar and Ajmal Mian. 2018. Threat of Adversarial Attacks on Deep
Learning in Computer Vision: A Survey. IEEE Access 6 (2018), 14410–14430.
https://doi.org/10.1109/ACCESS.2018.2807385

[3] Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, and Prateek Saxena. 2021.
Scalable Quantitative Verification For Deep Neural Networks. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 312–323. https://doi.org/10.1109/ICSE43902.2021.00039

[4] BeamNG. 2020. BeamNG.drive vehicle simulator.
https://www.beamng.com/game/.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning
for Self-Driving Cars. CoRR abs/1604.07316 (2016). arXiv:1604.07316 http:
//arxiv.org/abs/1604.07316

[6] Swaroopa Dola, Matthew B. Dwyer, and Mary Lou Soffa. 2021. Distribution-
Aware Testing of Neural Networks Using Generative Models. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 226–237. https://doi.org/10.1109/ICSE43902.2021.00032

[7] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating Effective Test
Cases for Self-Driving Cars from Police Reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, New York, NY, USA, 257–267. https:
//doi.org/10.1145/3338906.3338942

[8] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. 2020. Fuzz
testing based data augmentation to improve robustness of deep neural networks.
In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
1147–1158. https://doi.org/10.1145/3377811.3380415

[9] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Çakan. 2020.
Importance-driven deep learning system testing. In ICSE ’20: 42nd Interna-
tional Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 702–713. https:
//doi.org/10.1145/3377811.3380391

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6572

[11] Divya Gopinath, Hayes Converse, Corina S. Păsăreanu, and Ankur Taly. 2019.
Property Inference for Deep Neural Networks. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering (San
Diego, California) (ASE ’19). IEEE Press, 797–809. https://doi.org/10.1109/ASE.
2019.00079

[12] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,
and Miryung Kim. 2020. Is Neuron Coverage a Meaningful Measure for Testing
Deep Neural Networks?. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for ComputingMa-
chinery, New York, NY, USA, 851–862. https://doi.org/10.1145/3368089.3409754

[13] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. 2020. A survey of safety and trust-
worthiness of deep neural networks: Verification, testing, adversarial attack and
defence, and interpretability. Computer Science Review 37 (2020), 100270.

[14] Chris Isidore and Peter Valdes-Dapena. [n.d.]. Tesla is under investigation because
its cars keep hitting emergency vehicles. CNN ([n. d.]). https://www.cnn.com/
2021/08/16/business/tesla-autopilot-federal-safety-probe/index.html

[15] Tim Levin. [n.d.]. Tesla’s Full Self-Driving tech keeps getting fooled
by the moon, billboards, and Burger King signs. Business Insider
([n. d.]). https://www.businessinsider.com/tesla-fsd-full-self-driving-traffic-
light-fooled-moon-video-2021-7

[16] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. 2021.
DeepPayload: Black-box Backdoor Attack on Deep Learning Models through
Neural Payload Injection. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 263–274. https://doi.org/10.1109/ICSE43902.2021.
00035

[17] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: differential
verification of deep neural networks. In ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel
and Doo-Hwan Bae (Eds.). ACM, 714–726. https://doi.org/10.1145/3377811.
3380337

[18] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. Commun. ACM 62, 11 (Oct.
2019), 137–145. https://doi.org/10.1145/3361566

[19] pytorch. 2019. PyTorch. https://pytorch.org/.
[20] David Shriver, Sebastian Elbaum, and Matthew B. Dwyer. 2021. Reducing DNN

Properties to Enable Falsification with Adversarial Attacks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 275–287. https:
//doi.org/10.1109/ICSE43902.2021.00036

[21] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-
behaviour prediction for autonomous driving systems. In ICSE ’20: 42nd In-
ternational Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 359–371.
https://doi.org/10.1145/3377811.3380353

[22] tech-rules. 2017. DAVE2-Keras. https://github.com/tech-rules/DAVE2-Keras.
[23] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail E. Kaiser, and Baishakhi Ray.

2020. Testing DNN image classifiers for confusion & bias errors. In ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1122–1134.
https://doi.org/10.1145/3377811.3380400

[24] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector:
input validation for deep learning applications by crossing-layer dissection. In
ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
727–738. https://doi.org/10.1145/3377811.3380379

[25] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. RobOT: Robustness-Oriented Testing for Deep Learning
Systems. In 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 300–311. https://doi.org/10.1109/
ICSE43902.2021.00038

[26] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial sample detection for deep neural network through model mutation
testing. In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan,
and Jon Whittle (Eds.). IEEE / ACM, 1245–1256. https://doi.org/10.1109/ICSE.
2019.00126

[27] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin
Zhang. 2021. Prioritizing Test Inputs for Deep Neural Networks via Mutation
Analysis. In 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 397–409. https://doi.org/10.1109/
ICSE43902.2021.00046

[28] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault Local-
ization for Deep Neural Networks. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 251–262.
https://doi.org/10.1109/ICSE43902.2021.00034

[29] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: A Coverage-Guided
Fuzz Testing Framework for Deep Neural Networks. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA,
146–157. https://doi.org/10.1145/3293882.3330579

[30] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and
Xiangyu Zhang. 2020. Correlations between Deep Neural Network Model
Coverage Criteria and Model Quality. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). As-
sociation for Computing Machinery, New York, NY, USA, 775–787. https:
//doi.org/10.1145/3368089.3409671

[31] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Valida-
tion Framework for Autonomous Driving Systems. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 132–142.
https://doi.org/10.1145/3238147.3238187

[32] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020. White-box fairness testing through adversarial
sampling. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.).
ACM, 949–960. https://doi.org/10.1145/3377811.3380331

[33] Husheng Zhou,Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming
Zhang, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing of
Autonomous Driving Systems. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). 347–358.

5

https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1109/ICSE43902.2021.00039
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380391
https://doi.org/10.1145/3377811.3380391
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/ASE.2019.00079
https://doi.org/10.1109/ASE.2019.00079
https://doi.org/10.1145/3368089.3409754
https://www.cnn.com/2021/08/16/business/tesla-autopilot-federal-safety-probe/index.html
https://www.cnn.com/2021/08/16/business/tesla-autopilot-federal-safety-probe/index.html
https://www.businessinsider.com/tesla-fsd-full-self-driving-traffic-light-fooled-moon-video-2021-7
https://www.businessinsider.com/tesla-fsd-full-self-driving-traffic-light-fooled-moon-video-2021-7
https://doi.org/10.1109/ICSE43902.2021.00035
https://doi.org/10.1109/ICSE43902.2021.00035
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3361566
https://doi.org/10.1109/ICSE43902.2021.00036
https://doi.org/10.1109/ICSE43902.2021.00036
https://doi.org/10.1145/3377811.3380353
https://doi.org/10.1145/3377811.3380400
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1109/ICSE43902.2021.00038
https://doi.org/10.1109/ICSE43902.2021.00038
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE43902.2021.00046
https://doi.org/10.1109/ICSE43902.2021.00046
https://doi.org/10.1109/ICSE43902.2021.00034
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3377811.3380331

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Simulator
	3.2 GPSS
	3.3 Implementation for Autonomous Vehicle

	4 Exploring the Approach Potential
	5 Broader Research Agenda
	References

