
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Probabilistic Conditional System Invariant Generation with
Bayesian Inference

Anonymous Author(s)∗

ABSTRACT
Invariants are a set of properties over program attributes that are
expected to be true during the execution of a program. Since de-
veloping those invariants manually can be costly and challenging,
there are a myriad of approaches that support automated mining of
likely invariants from sources such as program traces. Existing ap-
proaches, however, are not equipped to capture the rich states that
condition the behavior of autonomous mobile robots, or to manage
the uncertainty associated with many variables in these systems.
This means that valuable invariants that appear only under specific
states remain uncovered. In this work we introduce an approach
to infer conditional probabilistic invariants to assist in the charac-
terization of the behavior of such rich stateful, stochastic systems.
These probabilistic invariants take the form P (Outcome |Givens),
can encode a family of predefined patterns in either term, are gen-
erated using Bayesian inference to leverage observed trace data
against priors gleaned from previous experience and expert knowl-
edge, and are ranked based on their surprise value and information
content. Our studies on two semi-autonomous mobile robotic sys-
tems show how the proposed approach is able to generate valuable
and previously hidden stateful invariants.

KEYWORDS
invariant generation, bayesian inferenece, autonomous systems

ACM Reference Format:
Anonymous Author(s). 2020. Probabilistic Conditional System Invariant
Generation with Bayesian Inference. In ISSTA ’20: International Symposium
on Software Testing and Analysis, July 18–22, 2020, Los Angeles, U.S.A.. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Our community has built a large body of work on likely invariant
generation from system traces. This body includes the inference of
invariants of different types [23], from those attempting to charac-
terize a variable range of values [4, 5, 13, 17, 22] to those infering
temporal invariants [2, 11, 19–21, 26, 28], and utilizes a variety of ap-
proaches ranging from frequentist inference [5] to the generation of
polynomial relations [22] to k-tail [20] to deep learning [19]. As we
explored this body of work for its application to semi-autonomous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A.
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

Figure 1: Drone ISR scenario.

mobile robots, however, we came to realize that these kinds of sys-
tems introduce a couple of unique attributes that existing invariant
generation approaches were unable to fully capture.

The first unique attribute is the extent to which different system
states render distinct sets of invariants, as the behavior of these sys-
tems is conditioned not so much by typical programmatic structures
(i.e., functions pre- and post-conditions), but rather by particular
system states. For example, the sensors activated and the attitude
of a drone is conditioned by different mission states such as takeoff,
approaching a target, or tracking a target, while a self-driving ve-
hicle’s linear velocity bounds may change depending on whether
the car is charging, parking, driving within a city, or driving on
a highway. We argue and later show that ignoring this attribute
greatly limits the potential of uncovering valuable invariants that
only appeared under certain states.

The second distinctive attribute is the degree of uncertainty
intrinsic to these systems. They may render different results under
the same environmental conditions due to sensor noise, imperfect
estimators, inaccurate actuators, and humans in the loop. Sensors
like the onboard GPS for the Parrot BeBop 2 drone are ±3.0meters1,
actuators like those associated with the PX4 flight stack are often
capped below their max to avoid actuator saturation2, and humans
operators have a wide variety of reaction times. We argue and later
show that failing to handle this attribute properly will make it
difficult to judge the value of an inferred invariant.

The state of the art, however, does not support the generation of
invariants that are conditioned by arbitrarily complex system states,
nor does it support probabilistic invariants to better characterize
the uncertainty associated with the exposed behaviors. The closest
related work considers having two outcomes happening jointly
(not conditionally) and ignores the prior probabilities by making
assumptions about the data distribution [5].

In this work we address this challenge by building on the statis-
tical structure of conditional probabilities, P (Outcome |Givens), to

1https://www.parrot.com/global/support/products/parrot-bebop-2/faq-bebop-2
2https://dev.px4.io/v1.9.0/en/concept/mixing.html

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A. Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

uncover likely invariants that only manifest under particular pro-
gram states. In doing so we aim to fulfill four requirements to make
the approach practical. First, provided a high level specification of
the potential variables to explore as part of theOutcome andGivens ,
the approach must systematically investigate the potential of rele-
vant predicates on those variables as part of the Outcomes that are
only likely under specific predicates on those variables as part of
theGivens . Second, the approach must be able to uncover valuable
conditional invariants without overfitting. Overfitting presents a
challenge in that the addition of predicates into the Givens may
render invariants that hold with high probability but are applicable
to a very small number of instances. Third, the approach must be
able to leverage prior knowledge as it becomes available, either
from a trace or from a developer, to improve the probability esti-
mates, without incurring in the cost of recomputing all invariants
when new data is added. Fourth, the approach must avoid relying
on arbitrary thresholds to determine what is and is not significant
as the choice of such thresholds as highly dependent on the context.

To address the first requirement, we define a family of initial
relevant predicates patterns for the robotics domain and a Bayesian
invariant inference engine that implements conditional inference,
and implement a domain-specific specification language and a tool
pipeline to compute them. To address the second requirement, we
incorporate a ranking mechanism that judges value based on how
much an invariant probability changed from prior estimates to
posterior findings, and use an information content metric to se-
lect an invariant per outcome that offers best fit with the least
parameters. To address the third and fourth requirement, and also
to further support the first, we shift the inference model from using
the classical (frequentist) statistics employed by existing approaches
[5, 13, 17, 28], to a Bayesian inference model that allows us to easily
incorporate prior information from previous traces or developer’s
knowledge, and does not require the definition of arbitrary thesh-
olds or the reliance on data distribution assumptions.

The contributions of this work are:
• Approach to infer a family of conditional invariants patterns
from traces through Bayesian inference.
• Implementation that provides the mechanisms to specify the
space of variable predicates to explore, launch the inference
engine to systematically explore that space, and ranked the
solutions based on surprise and content.3
• Assessment of the proposed approach through its applica-
tion to two systems, a reconnaissance drone and a semi-
autonomous simulated car. The findings indicate that the
approach can uncover valuable invariants that cannot be
generated by existing approaches.4

2 MOTIVATION
Consider a drone performing a surveillance mission over a field
whose objective is to locate and confirm a target. Figure 1 shows a
downsized version of this real-world scenario where a micro-drone
is sweeping for QR code targets inside of a user-defined area.

This drone system contains a rich set of states that influence
system behavior. Some of its states may be defined by the mission

3github.com/anonymized/bayesInference/tool
4github.com/anonymized/bayesInference/data

Figure 2: Maximum andminimum possible probabilities for
Outcome predicate x-velocityHigh across number of predi-
cates in Givens.

phase, such as Machine = Hoverinд, or by the level of critical
resources such asWarninд = LowBattery. Many of such states are
encoded by design through specifications such as “When battery is
low, drone must land”. However, not all system states are explicitly
specified or defined in the code.For example, ranges over the speed
of the drone define states that affect the system behavior, such as the
ability to recognize and track obstacles. To adequately characterize
these systems, we must consider how such explicit and implicit
states condition the system behavior.

Some of these states are tightly coupled with sources of stochas-
ticism, such as mission states determined via operator-issued User-
Commands, Warning states precipitated by a loss of localization
connectivity, or speed-range states affected by a flight controller
cap on acceptable oscillations. Furthermore, such stochasticity may
be associated to the particular state. For example, assuming that
speed impacts the noise of the drone’s target sensors, the range of
speeds while sweeping an area correlates to the drone’s ability to
find targets. While it may be correct to report that a drone’s speed
was between 0.0 and 1.0 whenever a target was detected, a probabil-
ity distribution across those values gives a more granular view of
detection success based on speed. These stochastic attributes point
to the need to express these conditional invariants probabilistically.

Existing techniques [5, 11] are equipped to capture invariants
such as 0.0 < drone Speed < 1.0 andMissionState=PossibleTargetDetected
as preconditions when the drone enters its subroutine to query the
user for how to adjudicate the target, or temporal invariants such as
□(Sweepinд) → ^(PossibleTarдetDetected). To determine these
invariants, existing approaches might look at the parameters and
return values of the “target detected” subroutine or other forms of
program points, but would not necessarily inspect system variables
that are not directly tied to the input/output of that subroutine,
such as velocity or warning states. Moreover, existing approaches
would capture the value of those variables, but not necessarily the
probability of those values, much less the conditional probability
of those values. As a result, existing approaches do not depict a
sufficiently rich picture of the state space, especially of stochastic
systems like the ones we are targeting.

While there is obvious value to invariants such as “a drone might
recognize a target at velocities between 0.0 and 1.0 with 95% prob-
ability", existing approaches would not find that the drone had a
much higher detection rate when velocity was closer to zero. Ap-
plied to this drone scenario, our approach not only indicates the

2

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Probabilistic Conditional System Invariant Generation with Bayesian Inference ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A.

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

range of speed values given a target has been detected, but also
the probability of each range of speed values. To compute (and
subsequently update) the probabilistic distributions associated with
the outcomes at various system states, we use Bayesian inference
to determine the conditional probability relating them.

Another way to understand the potential of our proposed ap-
proach is illustrated by Figure 2, which shows the probabilities for
invariants of the form P(x-velocityHigh|Given1, Given2, ..., Givenn)
where the x-axis displays the number predicates in the given. As
shown by the upper bound of the blue area, selectively and incre-
mentally conditioning the space by incorporating more predicates
into the Givens can render invariants with higher probability. In-
creasing the number of predicates to consider, however, also in-
creases the computation cost exponentially and there is a point of
diminishing return where the invariants have higher probability
but overfit the data. These tradeoffs between value and cost is one
of the driving motivations for this work and one that studied later.

3 RELATEDWORK
Ernst et. al. [5] established Daikon, one of the benchmark inference
engines for detecting program invariants. Daikon’s engine creates
a field of potential invariants based on a set of predefined invari-
ant templates and the values found in a trace. We follow a similar
approach in that our predicates are basic patterns, but we incor-
porate then in the richer conditional probability structure. Daikon
then evaluates the potential invariants according to whether there
are sufficient samples to support them and no samples that vio-
late them. This frequentist approach, prevalent among invariant
inference engines, uses a confidence interval to ascertain that a
predicate holds against some probability of random negation, de-
termined by the number of samples supporting that predicate. One
drawback of their frequentist approach is that, while new traces
can be added to an existing sufficiently large set of samples, there
is a significant cost associated with the trace accumulation and
algorithmic complexity needed in order to reach that sufficiently
large set without relaxing the confidence interval. Daikon does not
compute conditional invariants, just joint probabilities, and does
not support multiple predicates.

Jiang et al. [17, 18] extend the Daikon invariant library to pat-
terns seen in robotic systems in order to derive monitors that can
check system properties at runtime. While Jiang et al. introduce
invariant templates tailored to robotic systems (e.g., bounded time
differentials, polygonal relationships between spatial variables),
their approach still relies on a traditional frequentist approach and
the use of confidence intervals to retain viable instantiations of
those templates for a set of traces. Aliabadi et al. [1] present a
similar approach for cyberphysical system security.

Grunkse [12] focuses on probabilistic invariants as a qualitative
expression of requirements. He introduces a rich set of specification
patterns coupled with a structured english grammar to express
bounded probabilistic behavior of a system, instead of in terms
of absolute correctness, to incorporate expert knowledge and to
sllow for it to be used for formal verification. Although this work
did not pursue automated inference of invariants, its treatment of
probabilistic patterns offers a roadmap for us to expand our work.

Perracotta [28] extracts temporal API specifications from traces
through a mix of analysis, patterns, and heuristics. There have

been many similar approaches since, but Perracota was among the
first to recognize that traces, or trace content for that matter, can
be noisy, so it incorporated mechanisms to ignore potential blips
of aberrant behavior patterns as negligible in the context of the
overall trend. Our search for probabilistic invariant generation is
inspired by these kinds of challenges. In a similar line of work,
Gabel et al. [11] developed a mining framework of temporal logic
properties. Their approach is similar to many approaches in terms
of combining patterns and incrementally encoding them as FSMs.
However, their strategy to start with simple patterns that can be
composed to generate much more complex ones is one that we have
adopted in our approach.

We note that none of the approaches, although closely aligned
with ours, produce the conditional probabilistic invariants with
Bayesian inference that we are pursuing.

4 APPROACH
The goal of the proposed approach is to generate invariants that
capture the probabilistic influence between system events as in
P (A|B). The next sections describe how, by building on conditional
probabilities and Bayesian statistical inference, we can process
system traces to produce invariants that meet that goal.

4.1 Overview
Figure 3 provides a high-level diagram of the approach. The ap-
proach takes three parameters: a trace, a file of invariant specifica-
tions processable by the grammar, and a set of prior distributions.
The trace consists of a series of time-stamped variable-value pairs,
the invariant specifications define the space of outcome and given
predicates worth exploring as part of a conditional distribution
P (A|B), and the prior distribution P (A) is a set of prior probabilities
which reflect whatever knowledge we have on the outcome. Data
wrangling is a preprocessing step that consists of trace interpola-
tion and file checking, and configuration provides the inference
engine with a space of predicates to explore. The core component
of the approach is the inference engine, which utilizes Bayesian
inference to compute conditional probabilities based on the predi-
cate space and information in the trace. The engine produces such
probability as per the Bayesian formula P (A | B) =

P (B |A)P (A)
P (B) ,

where P (B | A) and P (B) are computed based on the trace. P (B | A)
tells us how likely isA to support B, and P (B) is the total probability
B conditioned upon outcome variable A. The generated conditional
probabilities are then ranked based on the change from the prior
probability P (A) to the computed posterior P (A | B), which reflects
the chance of uncovering an overlooked invariants.

4.2 Invariant Specification Pattern
We capture the probabilistic influence between two dependent
events as conditional probabilities of the form P (A|B), generalized
as the probability ofA given B, whereA and B are boolean predicates
evaluated over single or multiple states of a system. B is commonly
referred to as the “given” predicate, which defines the subspace
where the probability of the A predicate is considered, and A as
the outcome. This simple conditional pattern belies the richness of
invariants it can encode, as these predicates can take many forms

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A. Anon.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

Figure 3: Approach Overview.
and can be composed to form arbitrarily complex descriptions of
variable states.

In its simplest form, if B is TRUE, then P (A | B) = P (A). This
implies that any existing invariant pattern developed in the related
work has the potential to be subsumed by the proposed invariant
encoding. That includes from the simplest form of state invariants
such as battery > 0 to complex metric temporal logic formulas
such as □(Takeo f f) =⇒ ^[0,3] (altitude > 0)). In its richest form
and the focus of this effort, P (A | B) lets us explore how the system
behavior encoded in B could influence other parts of the behavior
encoded in A. For example, continuing with the drone scenario
described in the motivation, given A : TarдetDetected = TRUE
and B : VelocityHiдh = TRUE, we could consider the conditional
probability P(TargetDetected | VelocityHigh) 5, which describes the
probability of a drone sensor detecting features of a target, given
that the drone is moving at high speeds.

The family of specification patterns we currently support is
guided in part by the needs we observed in the systems we have de-
veloped and studied, and includes three basic types of pattern pred-
icates: Equality, Ranдe , and Trend . Equality predicates are of the
formvar EqOP const , where variable type can be int | f loat |strinд |bool ,
and EqOP: == | !=. This type of predicate encompasses earlier exam-
ples such as TargetDetected=TRUE, Speed=0 andDroneState=Hovering.
For non-integer Equality variables, we support fuzzy predicates
with the addition of a threshold such that variable EqOP const ± δ ,
such as Acceleration = 9.8 ± 0.01. Additionally, we can have a dis-
junction of Equality over a variable, such as DroneState=Hovering
∨ DroneState=Translating. This kind of predicate is effective at cap-
turing explicit conditional states such as those embedded in the
state machine of a system.

Ranдe predicates are of the formvar OP const , withOP : |< |> |>=
|<=, and include conjunctions and disjunctions. Ranдe predicates
can capture implicit states encoded in variables values. For exam-
ple, a variable Latency has values that can be partitioned indicat-
ing a fast response Latency < 10, a medium response Latency ≥
10∧Latency < 20, or a slow response Latency ≥ 20, and the system
behavior may be conditioned differently across those ranges.

Trend predicates are different in that they involve state sequences,
which is particularly valuable to capture tendencies over time. These
predicates apply a function to a sequence of values within a con-
figured number of timesteps, referred to here as a window. Trend

5For readability, we simplify the predicates that check a boolean variable by just
specifying the variable name

predicates take the form of f (var [window]) OP const . The func-
tion f could compute an average over the window, but it can also
be more complex. For example, one f we use in our implementa-
tion calculates the derivative of the best fit quadratic polynomial
function of the values in this series. Given a window , the predi-
cate checks whether the derivative of a variable has increased in
that window: dvarw > 0, has decreased: dvarw < 0, or remains
constant: dvarw = 0. For example, a predicate on the variable
TrustHumanOnSystem could check whether it is increasing, de-
creasing, or remains unchanged. Similarly, for whether a car is
in autonomous or manual mode, the chanдeMode variable could
encode the direction in which the mode changed.

The pattern specification grammar we built for developers to
specify the space of predicates to explore is described in Section 4.5.
For simplicity, the examples in this section present predicate ex-
pressions over single variables as P(A | B). However, predicates may
be composed into conjunctions to define more complex nested
models such as P(A | B, C, ...). For example, we can condition
MissionState=PossibleTargetDetected upon x-velocityHigh, or upon
x-velocityHigh ∧ MachineState=Hover. Compound predicates and
model complexity are addressed in more detail in Section 4.4.

4.3 Inferring Invariants
Algorithm 1 shows the key steps in the inference process for two
predicates A and B in P (A|B). Given a trace, two predicates A and
B, and a prior distribution for A, the algorithm starts by processing
each record in the trace, and evaluating the predicates on the ap-
propriate trace variables. Such evaluation is performed according
to the type of predicate to render a TRUE if the predicate holds. If
predicatesA or B hold, then their corresponding frequency count is
updated, and if both of them hold then their joint probability is also
updated. Once the trace is processed, these frequency counts are
used to compute the probabilities required by Bayesian inference:
the total probability P(B), P(B | A), and finally P(A | B).

In practice, two aspects of the algorithm acquire additional com-
plexity. First, the eval function must deal with predicates that re-
quire processing multiple trace records concurrently, peeking back-
ward and forward in the trace to evaluate trend predicates. Second,
compound predicates impose additional frequency tracking, and
extended functions to compute the probabilities as they require to
iterate over a larger number of combinations of predicates. We now
illustrate these challenges through an example.

Consider the brief sample trace in Table 1. Let us assume a devel-
oper is interested in just exploring predicates A : MachineState =
PossibleTarдetDetected and B : y-velocityChanдe < 0, where the
y-velocityChange window size is 3 timesteps and its ranges are
y-velocity < 0, y-velocity ≥ 0. 6 The developer also provides a
MachineState = PossibleTarдetDetected prior of 0.3.

Algorithm 1 processes the trace to compute the frequency of
MachineState = PossibleTarдetDetected and of the likelihood
MachineState = PossibleTarдetDetected giveny-velocityChanдe <
0. Since the y-velocity window is 3 and ignoring windows extending
outside the shown trace, the algorithm counts two instances where
y-velocity decreases: from times 1-3 and from times 2-4. Checking

6In practice, a developer may specify a much larger number of predicates to explore,
and likely without constraining it to be part of just the outcome or the given.

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Probabilistic Conditional System Invariant Generation with Bayesian Inference ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

Algorithm 1: Single Inference
Input: trace, A, B, P(A)
Output: P(A|B)

1 foreach record in trace do
2 if eval(A) then
3 f reqA← f reqA + 1;
4 if eval(B) then
5 f reqAandB ← f reqAandB + 1;
6 end
7 end
8 end
9 P(B | A)← f reqAandB / f reqA ;

10 P(B)← P(B | A) * P(A) + P(B | ¬A) * P(¬A) ;
11 P(A | B)← P(B |A) * P(A) + P(B);

Table 1: Sample trace from the drone scenario.
Time MachineState y-velocity
1 Sweeping 0.1
2 Sweeping 0.2
3 Sweeping 0.05
4 PossibleTargetDetected 0.0
5 PossibleTargetDetected 0.1

the anchor index of these windows, times 3 and 4 have an instance
of MachineState=PossibleTargetDetected. So, the frequency counts
after processing the trace are: MachineState=PossibleTargetDetected:
count = 2,y-velocityChanдe < 0: count = 2, and y-velocityChange<0
| MachineState=PossibleTargetDetected: count = 1.

After the trace is processed, P (B) is calculated as per the law of to-
tal probability, which is generally defined as such for a discrete set of
all evaluations of predicate A: P (B) =

∑n
i=1 P (B | Ai)P (Ai) , where

Ai denotes a value of predicate A and P (Ai) is the prior probability
of Ai . For now, since we are working on just a single predicate
A, A1 corresponds to MachineState = PossibleTarдetDetected ,
and we use the complement ¬MachineState=PossibleTargetDetected
as A2 to compute the total probability. If another predicate like
MachineState = Landinд was defined by the developer, then that
would constitute the new A2, and the complement of those predi-
cates’ conjunction would be A3.

We are computing P (MachineState = PossibleTarдetDetected |
y-velocityChanдe < 0), so we would only need to calculate P (y-
velocityChanдe < 0 | MachineState = PossibleTarдetDetected)
+P (y-velocityChanдe < 0 | ¬MachineState = PossibleTarдet-
Detected). Since the prior ofMachineState = PossibleTarдetDetected
is 0.3 and the prior of ¬MachineState = PossibleTarдetDetected
is therefore 0.7, we have 1

2 ∗ 0.3 +
1
3 ∗ 0.7 = 0.383 as the to-

tal probability of MachineState = PossibleTarдetDetected . The
prior, likelihood, and total probabilities are then used to calcu-
late the Bayesian probabilities of each generated invariant. Then,
P (MachineState=PossibleTarдetDetected | y-velocityChanдe <

0) is
1
2 ∗0.3
0.383 = 0.392.

Note that in this illustrating example we focus on predicates
with expressions on just single variables. The above example easily
generalizes to handle multiple given predicates, where the algo-
rithm checks for the coincidence of Outcome and multiple Given

predicates instead of a single one. In order to calculate P (A|B,C),
f reqAandBandC would have to be computed to produce P (B,C |A)
on line 9 in Algorithm 1, and line 10 would become P(B, C)← P(B,
C | A) * P(A) + P(B, C | ¬A) * P(¬A).

4.4 Ranking and Model Selection
As the potential space of predicates to explore grows, so does the
number of invariants the approach must evaluate, and the ones a
developer must analyze. As such, we found it essential to integrate
mechanisms to highlight invariants that may surprise the developer
while taking into consideration the invariant complexity.

The first mechanism is based on the surprise ratio [15], expressed
as the ratio of posterior likelihood over prior probability of the out-
come, expressed P (A |B)

Ppr ior (A)
. Ranking by this ratio allows for the pri-

oritization of invariants that show the greatest potential to change
the likelihood of an outcome, and hence to highlight invariants that
may have been hidden before conditioning was used.

The second mechanism is based on the Bayesian information
criterion (BIC) [27]. This metric maximizes log likelihood while
penalizing overfitting of the model through the formula BIC =
ln(n)k − 2ln(L̂), where n=number of observations, k=number of
model parameters, and L̂=maximum log likelihood. Given two in-
variants with the same outcome, BIC is particularly useful to de-
termine whether an invariant with more predicates is worth it. For
example, if P(WarningState=BatteryLow | x-velocityHigh) contains
P(WarningState=BatteryLow | x-velocityHigh y-velocityHigh) and
P(WarningState=BatteryLow | x-velocityHighMissionState=Complete)
and the nested models with more predicates show little fluctuation
in the resulting likelihood ofWarningState=BatteryLow, then the
BIC will assign a more favorable score to the smallest model of the
three, i.e. the model at the topmost nesting level.

4.5 Implementation
The implementation generalizes Algorithm 1 to accomodate multi-
ple predicates, perfoming additional bookkeeping to optimize the
evaluation of those predicates, requiring only one traversal of the
trace. The implementation uses the Apache Commons Lang [8] and
Apache Commons Math [7] packages to process original and in-
termediate trace files. The implementation also defines a language
for developers to specify the space of predicates worth exploring,
which is summarized by the next production rules. The grammar
was implemented using the LALR-1 CUP parser generator [6] and
has been abbreviated for clarity.
\<start> ::= OUTCOMES <pred-definition>* GIVENS <pred-definition>*

CONSTRAINTS <constraint_definition>*

<pred-definition> ::= <var name> ',' <type> ',' <threshold> ','

<partitions> ',' <window>

<constraint_definition> ::= 'P(' <var_name> '|' <var_name>* ')'

<type> ::= `INT-Eq'| `DOUBLE-Eq'| `STRING-Eq'| `INT-Range'| `DOUBLE-

Range'| `STRING-Range'| `INT-Trend'| `DOUBLE-Trend' | `STRING-

Trend'

<partitions> ::= <partitions> <exp> | EMPTY

<exp> ::= <exp> ∧ <exp> | <exp> ∨ <exp> |

<var name> <num-op> NUMBER | <var name> <string-op> STRING

<num-op> ::= == | != | > | < | <= | >=

<string-op> ::= == | !=

<threshold> ::= NUMBER | EMPTY

<window> ::= NUMBER | EMPTY

5

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A. Anon.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

The engine can either use predicates as givens or outcomes as
specified by the grammar, or combinatorically construct conjunc-
tions of givens using any of the variable definitions. Constraints
allow the engine to investigate only specific combinations of vari-
ables of interest. This enables developer-defined configurations
of variables upon which outcomes should be conditioned, further
reducing the possible combinations of variables. For example, if a
config file defines the Outcome variables x-velocity and y-velocity,
and theGiven variablesMissionState andWarningState, then adding
the constraint P(x-velocity | MissionState) will only apply Mission-
State Given predicates to x-velocity predicates as defined in the
constraints, as opposed to applying the predicates of all Given
variables to the predicates of the x-velocity Outcome variable.

5 STUDY
The goal of this study is to better understand the value and cost of
the generated conditional probabilistic invariants. More specifically,
our research questions are:
• What is the value-added of the generated conditional proba-
bilistic invariants? We judge value by ranking the invariants
based on the surprise index, i.e. how much they changed
from the prior, by interpreting the top generated invariants
per outcome among those according to the lowest Bayesian
information criteria, and by comparing the resulting sets of
invariants against those generated by Daikon7.
• What is the cost of generating such invariants? We assess cost
in terms of the time to generate the invariants as a function
of the number of predicates and trace length.

In the following sections, we first describe the setup of engine
and scenarios, then address these two research questions.

5.1 Study Setup
To answer the research questions, we required systems that met
three requirements. First, they had to exhibit stochastic and condi-
tional behavior. Second, they had to be amenable to the proposed
analysis in that they generated a trace and were accessible enough
for us to interpret the findings. Third, they had to cover different
domains in terms of the sources of uncertainty and type of systems
to help us understand whether the results would generalize. We
identified two systems and contexts that meet those criteria and
are described in more detail in the next subsections: (1) a drone
performing a reconnaissance mission, and (2) an autonomous driv-
ing car interacting with a human driver. Both systems and their
executing scenarios were developed at [anonymized], they cover
two distinct domains with different sources of uncertainty, with
the ground system uncertainty caused primarily by the drivers and
sensors, and the aerial system caused by the sensors.

For each system we prepared configuration files and converted
their system traces into a standard format processable by the infer-
ence engine. As a general strategy, when building the configuration
files we favored including all potentially interesting variables even

7We note that Daikon does not consider prior probabilities, assumes certain thresholds
and data distributions, and most important it only supports single-predicate joint
probabilities (Daikon’s mechanism to identify state partitions is called “conditional”
splitting but it is really computing a “joint” probability between a variable holding a
value and an invariant).

when we could not clearly anticipate their relation to other vari-
ables. We were more conservative in defining ranges, favoring
fewer ranges because smaller partitions of variable values were
difficult to define meaningfully without significant empirical tun-
ing. For example, the values of reaction_time were split into two
ranges, 0 ≤ reaction_time < 7 being fast and reaction_time ≥ 7
being slow. These ranges were determined through Jenks natural
breaks optimization [16] with slight adjustments to the resulting
breakpoints to create uniform intervals. Ranked invariants were
evaluated by surprise ratio, calculated by comparison of the poste-
rior over prior. Surprise ratios can be interpreted as the factor by
which an outcome becomes more likely in a conditioned state. An
invariant P(x-velocityHigh | batteryLow) with a surprise ratio of
2 indicates that the outcome x-velocityHigh is 2 times more likely
when conditioned upon the given batteryLow.

Priors were calculated according to their frequency count in a
subset of the traces for each system. The subset from which the
priors were derived was disjoint from the subset of traces from
which invariants were generated.

5.1.1 Drone ISR. The drone scenario is designed to mimic a simple
intelligence/surveillance/reconnaissance (ISR) mission. The drone
scenario employs a DJI Tello [24] whose onboard computer is inter-
faced with a series of controllers implemented in (ROS) [10]. The
drone navigates in a controlled indoor flying cage equipped with
a Vicon localization system [25]. The ISR mission starts with the
drone autonomously taking off at randomly defined “base” coordi-
nates and approaching a predefined sweep area. Once the sweep
area is reached, the drone sweeps for a “target” identifiable through
a QR code. The waypoint navigation and sweep speed are adjusted
by PID controllers. When a target is detected, the drone stops and
queries the operator to confirm the target, which may require closer
manual exploration. When a target is adjudicated to be the desired
target, the drone returns to the home base coordinates. If the drone
loses its localization services, it hovers and queries the user for a
decision. The user may either request manual control to guide the
drone back into the last localized position, in which case the user
may return to autonomous control and the drone resumes sweeping
where it left off, or the user may request an emergency landing. If
the user does not respond within a set time, the drone performs an
emergency landing. The targets were positioned outside of the lo-
calization area so, if the operator requested the drone to examine a
target too closely, the drone would likely lose localization services.

A total of 34 runs containing 109 unique variables were collected
using one operator and a variety of user inputs. Of those runs,
30 detected a possible target, 23 had the operator taking manual
control, 20 had the operator issuing a closer examination command,
21 saw at least a partial loss of localization services, 20 saw a total
loss of localization services, and 3 ended in emergency landings.
17 of these drone runs were randomly selected and their traces
were used to compute the priors. Traces were captured using the
ROS bagging [9], which produces a trace of timestamped variable-
value pairs. Our data wrangling scripts transform those bags into
traces that had a value for every variable at every timestep using
interpolation and that were in the .csv format required by our
implementation. Traces were on average 93.5s long per run. Priors
traces comprised 49.0% of all traces used in this study.

6

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Probabilistic Conditional System Invariant Generation with Bayesian Inference ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A.

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

Table 2: Variables in the Drone Study.
Variable Predicate Type Meaning
UserCommand String Equality Command chosen by user from a predefined list. Can take values of: Default (No command), Hover, KeepSweeping,

LookCloser, RequestAutoControl, RequestManualControl, ReturnHome, Land
MissionState String Equality Set of states describing mission status. Can take values of: Complete, InProgress, InsideSweepArea, OutsideSweepArea,

PossibleTargetDetected, Suspended
MachineState String Equality Set of states describing drone status. Can take values of: FinishedBehavior, Hovering, Landing, LosingVicon, Manual,

OutsideSweepArea, PossibleTargetDetected, Sweeping
x-velocity Float Range Magnitude of the x-velocity in m/s. Range: 0-1.0
y-velocity Float Range Magnitude of the x-velocity in m/s. Range: 0-1.0
reaction_time Float Range Time in seconds user took to give a command after being prompted. Range: 0.0-14.0
sensor.status Integer Equality Values target sensor takes depending on what it detects. 1=no target detected, 2=sensor ready to detect, 3=full target

detected, 4=partial target detected

Table 3: Variables in the Autonomous Car Study.
Variable Predicate Type Meaning
Mode String Equality Driving mode that the simulated car is in. Can take values of: Autonomous, Manual
WheelChange Float Trend Rate of change of wheel angle of the simulated car per second in degrees. Range: -360−360
Throttle Float Range Throttle applied to the simulated car in percentage. Range: 0-100
Brake Float Range Braking pressure applied to the simulated car in percentage. Range: 0−100
VelocityChange Float Trend Rate of change of the velocity of the simulated car per second inm/s2 . Range: -7−5
Event String Equality Event detected by the sensor of the simulated car. Can take values of Pedestrian, Obstacle, Truck, Cyclist, False Alarm,

None (None indicates nothing is detected by the sensor)
TrustChange Integer Trend Change of trust level towards the autonomous driving system. Can take values of -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5

Figure 4: Autonomous driving scenario.

A total of 30 unique predicates were identified to comprise the
outcomes and the givens to generate 72,347 invariants. Table 2
lists the variables appearing in the top ten invariants that will be
reported in the next section.

5.1.2 Autonomous Driving. The autonomous driving study is de-
signed to explore drivers reactions under 16 different scenarios
and modes, on a simulated four-lane road for the participants to
interact with a driving simulator (Force Dynamics CR 401 [3]). In
each scenario, there are four potentially hazardous incidents: a
pedestrian crossing the road, a cyclist riding slowly in the same
lane, a stopped truck in the same lane, and an incoming truck in
the other lane. The occurring incidents are randomized so that the
participant cannot predict the next incident. The simulated car is
equipped with a sensor to detect any events in the roadway within
40 meters. When detecting an incident, depending on the scenario,
the car may send an auditory alarm to alert the driver. Among the
16 driving scenarios, eight of them are fully-autonomous scenarios,
the wheel, throttle, and brake are controlled by a path-following
controller that attempts to maintain a velocity, stay in the center
of the lane, and avoid hazardous incidents. The other eight are
semi-autonomous so the driver can switch between autonomous
and manual driving mode. The system will not respond to any

operation from the human driver.While driving, the subjects can
adjust their trust level towards the autonomous driving system in
a scale from one to five, with five being the highest trust level, by
pressing buttons embedded on the steer to increase or decrease
the trust level. The drivers can only change the trust level in the
autonomous driving mode. Switching to manual driving mode will
set trust level at 0. Switching from the manual driving mode to the
autonomous driving mode will set trust to the default of three.

The study had 19 participants from [Anonymized]. Each partici-
pant had one training trial and 16 experimental trials. 9 participants
were randomly selected and their driving traces (144 traces total)
were used to compute the priors. Traces were captured using the
PreScan software [14] which was integrated with the simulator.
Each trial lasted 180 seconds resulting in a trace of 180 elements
with a time step of 1 second. We recorded the vehicle dynamics,
environment information, and user reactions through 32 variables.
In total, 3,326 invariants were generated for the driving scenario.
Table 3 shows variables appearing in the top ten invariants that
will be reported in the next section.

5.2 Results on Value-added
We present the top ten invariants generatedfor each system in
Tables 4 and 6 (the rest of the invariants are available in the repo).
Invariants are presented in the form P (Outcome | Givens). The
prior probability is the probability of outcome A as calculated from
the prior dataset. The surprise ratio shows the relation of posterior
to prior, and the explanation is a straightforward description of the
invariant defined formally in the first column.
Drone ISR. Table 6 shows the top ten invariants for the drone sce-
nario, ranked in descending order by surprise ratio. A system devel-
oper might expect some of the invariants with high posterior prob-
abilities, such as P(MissionState=Complete | MachineState=Landing
UserCommand=Default WarningState=Default) on row 10. This is
because in order for the drone to have completed its mission, it must
make it back to its original starting point without incident and land.
This invariant is strongly upheld by design, and so its probability
will remain high across any traces supplied to the engine. Compare

7

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A. Anon.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

these high posterior probabilities to the respective 0.04574 prior
probability ofMissionState = Complete , which was calculated by
frequency count across all state spaces in the prior dataset.

Some invariants had an unexpectedly high surprise ratio. Invari-
ant P(sensor.status=4 | MissionState=PossibleTargetDetected 0.01≤y-
velocity<0.25 reaction_time=null) with the highest surprise ratio on
row 1 showed that when the drone was in a PossibleTargetDetected
state and y-velocitywas low, the sensorwas only able to detect a par-
tial target, perhaps indicating the need for a lower sweep speed in
order to keep the full target in sensor range. The high surprise ratio
of P(UserCommand=RequestAutoControl | MissionState=InProgress
MachineState=LosingVicon WarningState= LosingVicon) on row 4
was unexpected because other mission states can be associated
with UserCommand=RequestAutoControl, such as a suspension of
the mission and use of manual control to return to Vicon connec-
tivity following to a NoVicon state, which can occur during any
machine state. This invariant tells us that the user had difficulty
perceiving when localization connectivity was re-established and
tried using autonomous control when it was not possible, which
could be an opportunity for improvement in a later version of
the system. P(reaction_time>7 | MissionState=OutsideSweepArea sen-
sor.status=3 y-velocity>=0.25) on row 7 was also unexpectedly
high. The predicate reaction_time>7 can be associated with any
command, but it seems to be most closely associated with end-of-
mission commands as the mission state it is most closely related to
is OutsideSweepArea. The slow reaction time when the sensor is
detecting a full target and the drone is outside the sweep area could
be interpreted by the developer as an area for optimization, such as
a need for sensor stabilization or a higher x-velocity at that time.

Predicates f liдht_data.battery_low , y − velocity < 0.01, and
0.01 ≤ x −velocity < 0.25 do not appear in the top ten invariants
whatsoever. This shows that various subspaces within the trace
show markedly different probabilistic behaviors than the priors
characterizing the entire event space of similar traces, and which
the naive approach discussed in the introduction could not capture.
The wide gap in prior and posterior probabilities underlines the
need to capture behavior on a stateful basis to more accurately
represent system behavior.

The comparison of common predicates between invariants in
Table 4 and priors in Table 7a, shows marked dissimilarities. No
predicates appear in both the top ten priors and top ten invariants’
posterior outcome predicates. Out of the 25 total unique predicates
in Table 4 only 5 also appear in the top ten priors. This shows that
stateful conditioning has a significant impact upon the probability
of predicates.

We compare our approach to the perennially popular inference
engine Daikon. Table 5 shows output for a tweaked version of
Daikon that includes the invariant probabilities for single-predicate
splitting and allows for expression of stateful behavior as a con-
junction. Comparing the probabilities of the UserCommand pred-
icates in Table 5 and Table 4, we see that the Daikon invariants
capture probabilities closer to unconditioned prior probabilities,
but give no indication of the circumstances under which those
commands occur. In the warning_state_change entry point, we
see that the range of x-velocities is similar to the Bayesian in-
variant P(WarningState=LosingVicon | sensor.status=1 MachineS-
tate=LosingVicon x-velocity<0.01) on row 6. However, this is not

a conditional invariant but rather a conjunction of sensor.status==1
∧ x-velocity ≥ -0.609 which holds with confidence ≥0.95 at this pro-
gram point. Moreover, it is not possible to split this program point
using more than one predicate at a time, thus overlooking most of
the invariants in Table 4. While these invariants are informative,
they do not reach the granularity and freedom of configuration that
is achievable with our approach.

Overall, the generated probabilistic invariants confirm defined-
by-design properties and expose properties of the drone ISR system
that were heretofore unknown or not obvious and not captured by
existing approaches.
Autonomous Driving. Similar to the drone scenario, some of the
generated invariants with the highest posterior likelihood confirm
our understanding of how the system operates. We here discuss
invariants from the table selected for their high surprise ratios or
which were of particular interest to the developers of the system. In-
variant P(Brake>0 | Mode=autonomous Throttle==0 Event=pedestrian
detected TrustChange>0) on row 1 had the highest surprise ratio,
possibly due to the specific behavior the autonomous controller ex-
hibited in the presence of a pedestrian and the trust-building effect
it had on the human in the loop. Invariant P(Throttle==0 | Mode =
autonomous Event=pedestrian detected) on row 2 had a similarly
high surprise ratio, with posterior likelihood of 1.0 indicating that
when the car is autonomously controlled and a pedestrian is in
the roadway, the throttle is no longer engaged. This has a slightly
higher probability than P(Brake>0 | Mode=autonomous Throttle==0
Event=pedestrian detected TrustChange >0), likely because the throt-
tle must be disengaged before brake can be engaged, and the brake
may be engaged for multiple reasons, such as a different event or a
curve in the road. The inclusion of predicate TrustChanдe > 0 in
the givens was surprising as well, as it indicates that an increase in
trust in conjunction with detecting a pedestrian is correlated with a
subsequent application of the brakes. Note that this is not a causal
relationship, as the autonomous driving algorithm does not react
to changes in trust from the human in the loop.

Dealing with incidents on the road is essential to demonstrate re-
alistic safety behaviors in the autonomous driving scenario. Invari-
ants given Event=Pedestrian detected characterize the performance
of the simulated car when handling the incident of pedestrian cross-
ing the road. The car decreases the velocity by applying brake and
easing the throttle, but no wheel change is closely associated ac-
cording to the model selection algorithm. It fits the expectation that
the car tends to slow down, rather than changing lanes to bypass
the pedestrian. In larger models, bothWheelChanдe >= 20 and
WheelChanдe < 20 predicates present with no significant change
to the posterior likelihood, showing that the posterior likelihood is
more strongly conditioned on a change in Throttle . On the other
hand, invariants given Event=Cyclist detected shows that the car
performs a steep turn and unexpectedly accelerates in order to
avoid the cyclist. Outside of the top ten, similar invariants can be
found involving Event = Truck , which shows that the car again
unexpectedly accelerates when passing the incoming truck on the
other lane. These invariants present trends that the designers were
unaware of and provide direct guidance on improving the system
design when handling incidents.

Invariants related toMode provide the information during man-
ual driving or autonomous driving. Invariant P(TrustChange>0 |

8

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Probabilistic Conditional System Invariant Generation with Bayesian Inference ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A.

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Table 4: Drone Invariants
Invariant Posterior Original prior Surprise ratio Explanation
P(sensor.status=4 |
MissionState=PossibleTargetDetected
0.01≤y-velocity<0.25 reaction_time=null)

0.29573 0.00185 159.85393
When a possible target has been detected, y-velocity is low, and
no user reaction has been recorded, the sensor is likely detecting
a partial target.

P(UserCommand=ReturnHome |
MachineState=PossibleTargetDetected x-velocity>=0.25) 0.5213 0.00906 57.53832 When a possible target has been detected and x-velocity is high,

user has likely just issued a command to return home.
P(UserCommand=Hover |
MachineState=Sweeping x-velocity>=0.25) 0.02941 0.0006 49.01961 When drone is performing a sweeping task and x-velocity is high,

user has likely just issued a command to hover.

P(UserCommand=RequestAutoControl |
MissionState=InProgress
MachineState=LosingVicon WarningState=LosingVicon)

0.27739 0.00604 45.92581

When mission is in progress, drone has detected unreliable Vicon
connectivity, and a warning has been raised for unreliable Vicon
connectivity, the user has likely just issued a command to give
autonomous control to the drone.

P(UserCommand=Land |
MachineState=Landing x-velocity<0.01) 0.02976 0.00121 24.59156 When machine is landing and x-velocity is low, the user has likely

just issued a command to land.

P(WarningState=LosingVicon | sensor.status=1
MachineState=LosingVicon x-velocity<0.01) 0.3836 0.01853 20.70172

When sensor has not detected any target, drone has detected un-
reliable Vicon connectivity, and x-velocity is low, a warning has
likely been raised for unreliable Vicon connectivity.

P(reaction_time>7 | MissionState=OutsideSweepArea
sensor.status=3 y-velocity>=0.25) 0.23488 0.01183 19.85448 When drone is outside the sweep area, the sensor has detected a

full target, and y-velocity is high, user reaction time is likely slow.
P(MachineState=FinishedBehavior |
x-velocity>=0.25 UserCommand=ReturnHome) 0.68655 0.03845 17.85569 When x-velocity is high and user has issued a command to return

home, the drone is likely finished its task.

P(MachineState=LosingVicon | sensor.status=1
x-velocity<0.01 WarningState=LosingVicon) 0.47021 0.02791 16.84733

When sensor has not detected any target, x-velocity is low, and a
warning has been raised for no Vicon connectivity, the drone
has likely detected loss of Vicon connectivity.

P(MissionState=Complete | MachineState=Landing
UserCommand=Default WarningState=Default) 0.76471 0.04574 16.71854 When drone is landing, user has not issued a command, and no

warning has been raised, mission is likely complete.

Table 5: Daikon Drone Invariants
Daikon Drone Invariants
/flight_data.battery_low one of { "False" (90.83%), "True" (9.17%) }
MissionState one of { "Complete" (4.63%), "InProgress" (9.14%), "InsideSweepArea"
(37.34%), "OutsideSweepArea" (22.76%), "PossibleTargetDetected" (18.21%),
"Suspended" (7.21%), "AbortingMission" (0.73%) }
UserCommand one of { "None" (1.00%), "Hover" (0.55%), "KeepSweeping" (2.51%),
"Land" (0.73%), "LookCloser" (58.75%), "RequestAutoControl" (11.79%),
"RequestManualControl" (13.85%), "ReturnHome" (10.83%)}
reaction_time ≥ 0.0
x-velocity ≤ 1.0
x-velocity ≥ -1.0
..warning_state_change():::ENTER;condition="sensor.status == 1"
y-velocity <= 0.225656467772
x-velocity >= -0.609268306903

Brake==0 Mode=manual Throttle>0 Event=None) on row 5 shows
that human drivers tend to increase their trust following “normal”
operation in manual mode. This also indicates that they subse-
quently leave manual mode, as it is not possible to raise trust in
manual mode.

Trust affects human drivers’ reliance on the system. P(TrustChange
< 0 | Brake==0Mode=autonomous Throttle>0 Event=NoneWheelChange
>= 20) on row 7 tells that when throttle is engaged and the wheel an-
gle is changing quickly, the trust level is more likely to decrease. The
absence of an Event seems to indicate this is a perceived safety issue
on the part of the human in the loop. However, P(TrustChange==0 |
Brake==0 Mode=autonomous Throttle>0 Event=None WheelChange
>= 20) on row 10 shows us that the human in the loop is more likely
to leave trust unchanged under those same conditions. This seems
to indicate that there are latent variables not being accounted for,
possibly in the system or on the part of the user. Understanding
the trust evolution contribute to a trustworthy system.

The invariants in the driving scenarios confirmed expected per-
formance and known system design attributes. Moreover, they
helped to identify overlooked properties and better understand the
system in the practical situation.

To judge the effect that given predicates have on the outcome like-
lihood, we compare our results in Table 6 to the prior probabilities in

Table 7b. Of the 6 unique variables and 11 unique predicates shown
in Table 6, the top ten priors and top ten invariants share all of those
variables and 8 of those predicates. The top ten invariants contain 10
unique outcome predicates, half of which are absent from the priors.
Posterior outcome predicates are predominantly Ranдe and Trend
types, whereas given predicates consistently include Event and
Mode values. Only Event = None , Event = Pedestriandetected
and Event = Cyclistdetected appear in these high-surprise, high-
parsimony models. The only Event predicate in priors is Event =
None . Additionally, of the outcome predicates, TrustChanдe > 0,
TrustChanдe == 0, and Brake > 0 do not appear in the priors.
Of the givens, Throttle == 0, TrustChanдe > 0, and all Event
predicates excepting Event = None do not appear in the priors.
Mode = Manual ,WheelChanдe >= 20, and Brake == 0 appear
universally in all sets.

The insights gained from the conditional invariants and their
marked dissimilarity from the priors show that we have uncovered
invariants of value that were previously obscured in a context that
did not consider state.

5.3 Results on cost
In this section we briefly explore a dimensions the space of invari-
ants to explore and the associated inference cost. Figure 5 plots
the runtime cost in system seconds when executing the inference
engine on traces of three different lengths (25K, 50K, 100K) pro-
duced by the Drone ISR when three different sets of predicates are
explored (5, 10 and 20 variables of Ranдe type with two predicates
each). Runtime tests were performed on a containerized Linux box
with an x86_64 AMD FX-8120E 3.1GHz 8-core processor. As the
graph shows, the runtime of the engine depends on both factors, but
the influence of the number of variables being compared is domi-
nant as the space to explore grows exponentially when the variables
are considered as both outcomes and givens. As the number of vari-
ables grows, a developer can control this cost by specifying whether

9

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A. Anon.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

Table 6: Driving Invariants
Invariant Posterior Original prior Surprise Ratio Explanation
P(Brake>0 | Mode=autonomous Throttle==0
Event=pedestrian detected TrustChange>0) 0.96674 0.04425 21.84719 When mode is autonomous, throttle is not engaged, a pedestrian is in

the roadway, and trust has increased, brake is likely engaged.
P(Throttle==0 |
Mode=autonomous Event=pedestrian detected) 1 0.0975 10.25641 When mode is autonomous and a pedestrian is in the roadway, throttle

is likely not engaged.
P(Mode=manual |
Throttle==0 Event=None) 0.94737 0.14803 6.39984 When throttle is not engaged and nothing is detected in the roadway,

mode is likely manual.
P(WheelChange<20 |
Mode=autonomous Event=None) 0.52775 0.496 2.91074 When mode is autonomous and nothing is detected in the roadway,

wheel angle is likely changing slowly.
P(TrustChange>0 |
Brake==0 Mode=manual Throttle>0 Event=None) 0.30904 0.115 2.68735 When brake is not engaged, mode is manual, throttle is engaged, and

nothing is detected in the roadway, trust is likely increasing.
P(WheelChange>=20 |
Brake==0 Mode=autonomous Throttle>0
Event=cyclist detected TrustChange<0)

0.90398 0.504 1.79362
When brake is not engaged, mode is autonomous, throttle is engaged, a
cyclist is in the roadway, and trust increased, wheel angle is likely
changing quickly.

P(TrustChange<0 |
Brake==0 Mode=autonomous
Throttle>0 Event=None WheelChange>=20)

0.14546 0.12 1.21214
When brake is not engaged, mode is autonomous, throttle is engaged,
nothing is detected in the roadway, and wheel angle is chang-
ing quickly, trust is likely to decrease.

P(Throttle>0 |
Mode=autonomous Event=None) 1 0.9025 1.10803 When mode is autonomous and nothing is detected in the roadway,

throttle is likely engaged.
P(Brake==0 |
Mode=autonomous Event=None) 1 0.95575 1.0463 When mode is autonomous and nothing is detected in the roadway,

brake is likely not engaged.
P(TrustChange==0 |
Brake==0 Mode=autonomous Throttle>0
Event=None WheelChange>=20)

0.76918 0.765 1.00546
When brake is not engaged, mode is autonomous, throttle is engaged,
nothing has been detected in the roadway, and wheel angle is changing
quickly, trust is likely to remain constant.

Table 7: Top Prior probabilities.
(a) Drone scenario

Predicate Prior
UserCommand=Default 0.958
flight_data.battery_low=False 0.950
WarningState=Default 0.897
status.data=1 0.724
MachineState=Sweeping 0.427
y-velocity < 0.01 0.426
MissionState=InsideSweepArea 0.405
0.01 ≤ x-velocity < 0.25 0.390
x-velocity < 0.01 0.376
0.01 ≤ y-velocity < 0.25 0.354

(b) Driving scenario

Predicate Prior
Brake=0 0.956
Event=None 0.918
Throttle>0 0.902
Mode=Autonomous 0.852
WheelChange≥20 0.504
WheelChange<20 0.496
VelocityChange>0 0.466
VelocityChange<0 0.197
Mode=Manual 0.148
TrustChange<0 0.120

Figure 5: Runtime vs. trace length and number of predicates.

a variable is to be explored as a given or as an outcome, or more
restrictively by aiming for particular pairs of variable predicates.

6 CONCLUSIONS
In this work we have introduced what we believe is the first au-
tomated approach to generate conditional probabilistic invariants
leveraging Bayesian inference. Our study showed the viability and
potential of the approach to capture rich behaviors in two distinct
autonomous systems and contexts. While most invariant uses apply
here, we believe that a probabilistic understanding of stateful behav-
ior can quantitatively reaffirm system and safety properties, assist

in the discovery of unexpected behaviors appearing only under
certain contexts, and expose potential opportunities to optimize a
system with greater context specificity. As for associated cost seen
in Figure 5, the engine linearly scales to larger trace lengths and
exponentially scales to larger variable spaces.

This work leaves a great deal of opportunity for future research
threads. First, we will augment the inference engine by incorpo-
rating predicate definitions that include more complex operators
such as temporal ones. Second, we hope to move past developer’s
suggested variable and variables ranges to an engine that can auto-
matically explore that space through linear regression. Third, we
want to further tap into the Bayesian capabilities of the engine,
such as those for continuously updating the posterior and to incor-
porate multiple sources of information. Bayesian updating is one of
the most attractive features of the Bayesian approach, where one
after processing several traces and finding posterior probabilities
for some invariant, one could use that posterior probability in the
processing of further traces as a more accurate description of the
predicate space of a trace. Moreover, as the trace is processed, the
prior can be updated according to some given variable of choice.
Say we want to know the probability of a true positive of detecting
a target, i.e. P (TarдetDetected | DroneNearTarдet). We would cal-
culate the likelihood every step or several steps during the course
of the trace and use the updated prior at the end, resulting in a
more nuanced understanding of the overall probability of that prior
for that particular trace.

REFERENCES
[1] Maryam Raiyat Aliabadi, Amita Ajith Kamath, Julien Gascon-Samson, and

Karthik Pattabiraman. 2017. ARTINALI: Dynamic Invariant Detection for Cyber-
Physical System Security (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 349âĂŞ361. https://doi.org/10.1145/3106237.3106282

[2] Glenn Ammons, Rastislav Bodı k, and James R. Larus. 2002. Mining Specifications
(POPL ’02). ACM, New York, NY, USA, 4–16. https://doi.org/10.1145/503272.
503275

[3] Force Dynamics. 2019. Force Dynamics CR 401. https://www.force-dynamics.
com/.

[4] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000.
Quickly detecting relevant program invariants. In ICSE.

10

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Probabilistic Conditional System Invariant Generation with Bayesian Inference ISSTA ’20, July 18–22, 2020, Los Angeles, U.S.A.

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. 2007. The Daikon system for dynamic detection of likely invariants.
In Science of Computer Programming, Vol. 69. 35–45.

[6] C. Scott Ananian et. al. 2015. CUP Parser Generator for Java. https://www.cs.
princeton.edu/~appel/modern/java/CUP/.

[7] Apache Software Foundation. 2016. Commons Math: The Apache Commons
Mathematics Library. https://commons.apache.org/proper/commons-math/index.
html.

[8] Apache Software Foundation. 2019. Commons Lang. https://commons.apache.
org/proper/commons-lang/.

[9] Open Source Robotics Foundation. 2015. rosbag Package Summary. http://wiki.
ros.org/rosbag.

[10] Open Source Robotics Foundation. 2019. Robot Operating System. https://www.
ros.org/.

[11] Mark Gabel and Zhendong Su. 2008. Javert: fully automatic mining of general
temporal properties from dynamic traces. In SIGSOFT FSE.

[12] L. Grunske. 2008. Specification patterns for probabilistic quality properties. In
2008 ACM/IEEE 30th International Conference on Software Engineering. 31–40.
https://doi.org/10.1145/1368088.1368094

[13] Sudheendra Hangal and Monica S. Lam. 2002. Tracking Down Software Bugs
Using Automatic Anomaly Detection (ICSE ’02). ACM, New York, NY, USA,
291–301. https://doi.org/10.1145/581339.581377

[14] TASS International. 2019. PreScan Overview. https://tass.plm.automation.
siemens.com/prescan-overview.

[15] L. Itti and P. F. Baldi. 2006. Bayesian Surprise Attracts Human Attention. In
Advances in Neural Information Processing Systems, Vol. 19 (NIPS*2005). MIT Press,
Cambridge, MA, 547–554.

[16] G. F. Jenks. 1967. The Data Model Concept in Statistical Mapping. International
Yearbook of Cartography 7 (1967).

[17] Hengle Jiang, Sebastian G. Elbaum, and Carrick Detweiler. 2013. Reducing failure
rates of robotic systems though inferred invariants monitoring. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, November

3-7, 2013. 1899–1906. https://doi.org/10.1109/IROS.2013.6696608
[18] Hengle Jiang, Sebastian G. Elbaum, and Carrick Detweiler. 2017. Inferring and

monitoring invariants in robotic systems. Auton. Robots 41, 4 (2017), 1027–1046.
[19] Tien-Duy B. Le and David Lo. 2018. Deep specification mining. In ISSTA.
[20] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. 2008. Automatic genera-

tion of software behavioral models. 2008 ACM /IEEE 30th International Conference
on Software Engineering (2008), 501–510.

[21] ThanhVu Nguyen, Matthew B. Dwyer, and Willem Visser. 2017. Symlnfer: Infer-
ring program invariants using symbolic states. 2017 32nd IEEE /ACM International
Conference on Automated Software Engineering (ASE) (2017), 804–814.

[22] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014.
DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants. ACM
Trans. Softw. Eng. Methodol. 23, 4 (September 2014), 30:1–30:30. https://doi.org/
10.1145/2556782

[23] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2013. Automated API Property Inference Techniques. IEEE Transac-
tions on Software Engineering 39 (2013), 613–637.

[24] Ryze Robotics. 2018. Tello User Manual v1.0. https://dl-cdn.ryzerobotics.com/
downloads/Tello/20180212/Tello+User+Manual+v1.0_EN_2.12.pdf.

[25] Vicon Motion Systems. 2019. Vicon Motion Capture. https://www.vicon.com/
motion-capture/.

[26] Neil Walkinshaw, Ramsay Taylor, and John Derrick. 2016. Inferring extended
finite state machine models from software executions. Empirical Software Engi-
neering 21, 3 (01 Jun 2016), 811–853. https://doi.org/10.1007/s10664-015-9367-7

[27] Ernst Wit, Edwin van den Heuvel, and Jan-Willem Romeijn. 2012. âĂŸAll models
are wrong...âĂŹ: an introduction to model uncertainty. Statistica Neerlandica 66,
3 (Aug. 2012), 217–236. https://doi.org/10.1111/j.1467-9574.2012.00530.x

[28] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining Temporal API Rules from Imperfect Traces. In
Proceedings of the 28th International Conference on Software Engineering (ICSE
’06). 282–291.

11

