
Qualifying Exam Defense:
Implicit Invariants for Relational Data

Structures
Meriel Stein

May 18, 2020

1

Invariants

- Truisms that hold over the lifetime of a program

- Help to characterize system implementation at a higher-level

- Applications: check for correctness, find opportunities for optimization, can be
monitored at runtime to check for violations and/or enforce system properties...

2

WHILE LOOP INVARIANTS:
x < ◯x
x <=10.0 → y > 2
array1[0][0] == array2[1]
array2[1] == y

0. def someFunction(x):
1. y = 2
2. array1 = [[2 0], [0 0]]
3. array2 = [x y]
4. while x < 100:
5. if(x<=10):
6. y++
7. array1[0][0] ++
8. x++
9. return y POSTCONDITION INVARIANTS:

y <= 12

Relational Data Structures

- House values that are relational in placement w.r.t. other
adjacent values or the indices in which they are placed

- E.g. Tensors, 1D arrays, 2D arrays, point clouds, sets,
lists...

- More interesting if they are mutable & numerically typed
- More likely to exhibit complex behavior
- More likely to introduce bugs?

3

Motivation

4

- Invariants for relational data
structures have stronger guarantee
of appearing in swarms

- Actions/states of individual members
are often defined in relation to rest of
swarm

- ROS messages have velocity
vectors, point clouds and arrays from
laser scans and other sensors,
matrices representing occupancy
grid maps...

https://www.youtube.com/watch?v=ezTayb76x9U

https://www.youtube.com/watch?v=ezTayb76x9U

Motivating Example — Ground Swarm

5

START
- Randomly populated in open world
- Swarm members’ actions determined

according to local rules

FINISH
- Evenly dispersed
- Microadjustments due to noise from own

system and external environment

Motivating Example — Ground Swarm

Invariants from Current Approaches
- Cell-wise equivalence

- dist_matrix[i][j] == dist_matrix[j][i] [1]

- Array relations
- dist_matrix[i][j] = A[2*i+j] [2]

- Approximate temporals
- dist_matrix[i][j] <= ⃝ dist_matrix[i][j] where

next operator is not strictly enforced [3]

Missing Desired Invariants
- Linear algebraic invariants

- isSparse == False
- Subswarms

- Subswarm = {(0,0), (1,1), (2,2), (3,3)}
- Relational approximate temporals

- norm <= ⃝ norm ± ε
6

[1] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely program invariants to support program evolution.IEEE
Transactions on Software Engineering, 27(2):99–123, February 2001.
[2] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans.
Softw. Eng. Methodol. 23, 4, Article 30 (September 2014), 30 pages. DOI:https://doi.org/10.1145/2556782
[3] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.

Relational Data Structures

7

1 1 2

Scalar Vectors Matrices Tensors Graphs

1 2

2 4

 1 2 5 2

 7 2 3 2

State of the art

Proposed Work

A = null
X < 20
B → A

Arr1 = Arr2
len(Arr1) = 5

mat isInvertible tensor isSparse graph isAcyclic
graph isComplete

Problem Space

- Swarm projects collected
from Github

- Measurably mature
systems

- ~50 commits
- ~750 SLOC
- Had simulation
- Reference papers

- Data structures of interest
- Nonzero count for all projects
- Average 9.92 per project

8

Problem Space

Space of potential
variables Rel Vars

VectorsScalars

Other Vars

Tensors
Graphs

Point
Clouds

Booleans

Others

Strings

Problem Space

Space of
potential
variables

Rel Vars
VectorsScalars

Vars

Tensors Graphs

Point
Clouds

Booleans

Others

Strings

Problem Space

Space of
potential
variables

Rel Vars
VectorsScalars

Vars

Tensors Graphs

Point
Clouds

Booleans

Others

Strings

Language

Problem Space

Space of
potential
variables

Rel Vars
VectorsScalars

Vars

Tensors Graphs

Point
Clouds

Booleans

Others

Strings

Language

Environments

Problem Space

Space of
potential
variables

Rel Vars
VectorsScalars

Vars

Tensors Graphs

Point
Clouds

Booleans

Others

Strings

Language

Environments

Mission Objective

Approach -- Overview

1. Investigate potentially useful invariant patterns through
code analysis.
a. How are data structures of interest operated upon?
b. How are they used?

2. Expand upon existing inference techniques according to
potentially useful patterns.

3. Optimize inference techniques for the domain of relational
data structure invariants.

14

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

15

- Organized into 5 families
- Extensible

- Not exhaustive
- Generally applicable

patterns rather than overly
specific to systems in
problem space

- Chosen for applicability to
relational data structures, swarm
behavior, or commonly used to
describe number sets

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

16

Linear Algebraic
Invariant Patterns - Family of invariants not present in

previous work

- Linear algebra meant to characterize
high-dimensional data structures

- Used in basic proofs and theorems or
came up in code analysis

- Can be combined to point to theorems

- E.g. Dimension theorem[1]

[1] https://math.mit.edu/~gs/linearalgebra/linearalgebra5_6Great.pdf

https://math.mit.edu/~gs/linearalgebra/linearalgebra5_6Great.pdf

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

17

Linear Algebraic Invariant Patterns

- isSymmetric == True
- Potential optimization point

- isPositive == True
- Check for bugs

- Norm == 2.828
- Measure of dispersion

- Determinant == -4.0
- Measure of average variance

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 2
2 0

timestep : n

0 2
2 0

timestep : n+1

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

18

Distributions
Invariant Patterns

- Account for noise inherent in robotic
systems

- Characterize values occurring in data
structures

- max == 2
- min == 0
- mat.gaussian(1, 1)

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 2
2 0

timestep : n

0 2
2 0

timestep : n+1

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

19

Bounds
Invariant Patterns

- Account for noise inherent in robotic
systems

- Epsilon comparison as defined by user

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 2
2 0

timestep : n

0 2
2 0

timestep : n+1

- determinant < norm
- mean == 1
- mean < max
- mean < rank

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

20

Subswarms
Invariant Patterns

- Parts of the data structure that hold the
same (or similar) values at any given
timestep

- Reveal interdependent values/cells in
data structure

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 1
1 0

timestep : n timestep : n+1

- subswarm ([0,0], [1,1])
- subswarm ([0,1], [1,0])

0 1.1
1.1 0

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

21

Temporals
Invariant Patterns

- Arrived at through analysis of swarm
behavior

- Next: evolution of swarm behavior
over runtime

- Eventually: reaching a setpoint
- Eventually always: reaching a

stable equilibrium

0 .2
.2 0

timestep : 0

0 .3
.3 0

timestep : 1 …….

0 .7
.7 0

timestep : n

0 .7
.7 0

timestep : n+1

- mean < ⃝ mean
- ♢▢ max == 0.7
- ♢▢ norm == 0.9

Approach -- Overview

2. Expand upon existing inference techniques.
3. Optimize inference techniques for the domain of relational

data structure invariants.

22

Approach -- Inference

2. Expand upon existing inference techniques.

23

Approach -- Inference

2. Expand upon existing inference techniques.

24

- Input: trace, set of patterns
- Output: hashtable containing True/False

evaluation for all possible linear algebraic
invariants

- isInvertible == True
- General steps:

- For each pattern, iterate through trace
- Pattern holds at that step → increment

support for that pattern
- Pattern does not hold at that step →

abort evaluation
- End of the trace has been reached →

Check that support is sufficient

Approach -- Inference

2. Expand upon existing inference techniques.

25

0 .2
.2 0timestep : 0

0 .3
.3 0timestep : 1

…….

0 .7
.7 0timestep : n

0 .7
.7 0

timestep : n+1

predicate: matrix.max <= 0.7
Trace Pattern Confidence

matrix.max =
0.2

matrix.max =
0.3

matrix.max =
0.7

matrix.max =
0.7

1 - (1 / 12) = 0

1 - (1 / 22) = 0.75

1 - (1 / n2) = ...

1 - (1 / (n+1)2) = ...

…….

Approach -- Inference

2. Expand upon existing inference techniques.

26

- Input: trace, set of patterns
- Output: True/False evaluation for all possible

eventually always invariants
- ♢▢ isInvertible

- General steps:
- For each pattern, iterate through trace
- If pattern holds at that step, increment

support for that pattern
- Pattern does not hold → is there enough

of the trace left for it to receive sufficient
support?

Approach -- Inference

2. Expand upon existing inference techniques.

27

0 .2
.2 0timestep : 0

0 .3
.3 0timestep : 1

…….

0 .7
.7 0timestep : n

0 .7
.7 0

timestep : n+1

predicate: ♢▢ matrix.max == 0.7
Trace Pattern Confidence

matrix.max =
0.2

matrix.max =
0.3

matrix.max =
0.7

matrix.max =
0.7

1 - (1 / 12) = 0

1 - (1 / 12) = 0

1 - (1 / 12) = 0

1 - (1 / 22) = 0.75

…….

Approach -- Optimization

3. Optimize inference techniques for the domain of relational
data structure invariants.

28

- Occupancy grid from one of the three case
study projects

- In code: 80 x 80 cell grid
- Visually: 20 x 20 cell grid

- Want to “zoom out” and deal with an
abstracted version of this occupancy grid

- N.b. This is not the only optimization technique
that could be applied to this occupancy grid

Research Questions

1. Are the posited invariant patterns for relational data structures upheld in
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further
patterns or further expansion of inference techniques?

4. What is the cost associated with generating the posited families of
invariants?

29

Research Questions

1. Are the posited invariant patterns for relational data structures upheld in
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further
patterns or further expansion of inference techniques?

4. What is the cost associated with generating the posited families of
invariants?

30

Study -- Setup

31

1. Run system in simulation using unperturbed configuration.

2. Run again in adversarially perturbed configuration.

3. Diff invariants generated for both perturbed and
unperturbed configurations.

Study -- Results

32

Study -- Results

33

- Posited invariants are upheld
- Some invariants can distinguish

between some successful and
failed runs

- Could expand library to better
distinguish between minimal failure
and catastrophic failure

Research Questions

1. Are the posited invariant patterns for relational data structures upheld in
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further
patterns or further expansion of inference techniques?

4. What is the cost associated with generating the posited families of
invariants?

34

Summary

35

Contributions

- Expanded inference techniques

- Optimization for larger data structures

- Benchmark of swarm systems

Future Work

- Apply approach to new systems
- Heterogeneous cooperative robotic systems
- Jointed robotic arms
- Neural networks

- Expanded pattern library

- Approximate pattern matching

Thank You!
Questions

36

Readings

37

Invariants — Focus Readings

1. Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst,and Arvind Krishnamurthy. Inferring models of concurrent systems from logs of their
behavior with csight. In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, page 468–479, New York,
NY, USA, 2014. Association for Computing Machinery.

2. Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: Dynamic symbolic execution for invariant inference. In Proceedings of
the 30th International Conference on Software Engineering, ICSE ’08, page 281–290, New York, NY, USA, 2008.Association for Computing
Machinery.

3. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering, 27(2):99–123, February 2001.

4. Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.

5. Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Dig: A dynamic invariant generator for polynomial and array
invariants. ACM Trans. Softw. Eng. Methodol., 23(4):30:1–30:30, September 2014.

6. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Perracotta: Mining temporal api rules from imperfect
traces. In Proceedings of the 28th International Conference on Software Engineering, ICSE ’06, pages 282–291, 2006.

38

Invariants — Background Readings

1. Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank based fault localization approach using likely invariants. In
Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, page 177–188, New York, NY, USA, 2016.
Association for Computing Machinery.

2. Hengle Jiang, Sebastian G. Elbaum, and Carrick Detweiler. Inferring and monitoring invariants in robotic systems. Auton. Robots,
41(4):1027–1046, 2017.

3. Tien-Duy B. Le and David Lo. Deep specification mining. In Proceedings of the 27th ACM SIGSOFT- International Symposium on Software
Testing and Analysis, ISSTA 2018, page 106–117, New York, NY,USA, 2018. Association for Computing Machinery.

4. L. Grunske. Specification patterns for probabilistic quality properties. In 2008 ACM/IEEE 30th International Conference on Software
Engineering, pages 31–40, May 2008.

39

Supplementary Slides

40

Approach -- Optimization

3. Optimize inference techniques for the domain of relational
data structure invariants.

41

TODO:
Add
exampl
e of
what
this alg
does to
a big
matrix

Approach -- Optimization

3. Optimize inference techniques for the domain of relational
data structure invariants.

42

Study -- Results for Case Study #2

43

Study -- Results for Case Study #3

44

- Performance data collected from small
trace

- 2500 instances of 8-cell by 8-cell
matrices of type double

- Subswarms invariant inference
benefits most from parallelization

Study -- Performance

45

Example -- Neural Network

46

Weaknesses of Invariants

47

Inference Processes

Frequentist

Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.
Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000. Quickly detecting relevant program invariants. In Proceedings of the 22nd international conference on Software engineering (ICSE '00). ACM, New York, NY, USA, 449-458.
See Slide 15 for further references

Bayesian

Temporal

EventA == True

P(EventA==True | EventB==True) == 66%

EventA, EventB, EventA, EventB, … == True

48

Invariants - suggested complement or alternative to
introduce invariants…

49

OBJECT INVARIANTS
this.theArray != null
this.topOfStack >= -1
this.topOfStack <= size(this.theArray[])-1

INVARIANTS AFTER THIS RETURN
return == this.theArray[this.topOfStack]
return == this.theArray[orig(this.topOfStack)]
return == orig(this.theArray[post(this.topOfStack)])
return == orig(this.theArray[this.topOfStack])
this.topOfStack >= 0
return != null

public class StackAr{

 private Object [] theArray;
 private int topOfStack;

 public StackAr(int capacity)
 {
 theArray = new Object[capacity];
 topOfStack = -1;
 }

…
public Object top() {

if(isEmpty())
return null;

return theArray[topOfStack];
}
...

} Generated by Daikon from a Stack.Ar Java Class

Approach -- alternative slide to show algorithm
Expand upon existing inference techniques

eventuallyAlways(trace, pattern){
instantiated = False
foreach record in Trace

confidence = 1 - 1/(trace.len - trace.index(record))2

if pattern.eval(record)
instantiated = True

else
if confidence < 0.95 || instantiated==True

return False
return True

}

predicate: matrixD.determinant = -56

Trace

1 2
2 4

1 2
5 4

1 1
2 4

1 1
2 4

1 1
2 4

matrixD.det = 0

matrixD.det = -6

matrixD.det = 2

matrixD.det = 2

matrixD.det = 2

Pattern Confidence Instantiated Return

Problem Space

Var space Rel Var Language

Environments

VectorsScalars Others

