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Invariants

- Truisms that hold over the lifetime of a program

- Help to characterize system implementation at a higher-level

- Applications: check for correctness, find opportunities for optimization, can be 
monitored at runtime to check for violations and/or enforce system properties...
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WHILE LOOP INVARIANTS:
x  < ◯x
x <=10.0 → y > 2
array1[0][0] == array2[1]
array2[1] == y

0. def someFunction(x):
1. y = 2
2. array1 = [[2 0], [0 0]]
3. array2 = [x y]
4. while x < 100:
5. if(x<=10):
6. y++
7. array1[0][0] ++ 
8. x++
9. return y POSTCONDITION INVARIANTS:

y <= 12



Relational Data Structures

- House values that are relational in placement w.r.t. other 
adjacent values or the indices in which they are placed

- E.g. Tensors, 1D arrays, 2D arrays, point clouds, sets, 
lists...

- More interesting if they are mutable & numerically typed
- More likely to exhibit complex behavior
- More likely to introduce bugs?
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Motivation
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- Invariants for relational data 
structures have stronger guarantee 
of appearing in swarms

- Actions/states of individual members 
are often defined in relation to rest of 
swarm

- ROS messages have velocity 
vectors, point clouds and arrays from 
laser scans and other sensors, 
matrices representing occupancy 
grid maps...

https://www.youtube.com/watch?v=ezTayb76x9U

https://www.youtube.com/watch?v=ezTayb76x9U


Motivating Example — Ground Swarm
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START
- Randomly populated in open world
- Swarm members’ actions determined 

according to local rules

FINISH
- Evenly dispersed
- Microadjustments due to noise from own 

system and external environment



Motivating Example — Ground Swarm

Invariants from Current Approaches
- Cell-wise equivalence

- dist_matrix[i][j] == dist_matrix[j][i] [1]

- Array relations
- dist_matrix[i][j] = A[2*i+j] [2]

- Approximate temporals
- dist_matrix[i][j] <= ⃝ dist_matrix[i][j] where 

next operator is not strictly enforced [3]

Missing Desired Invariants
- Linear algebraic invariants

- isSparse == False
- Subswarms

- Subswarm = {(0,0), (1,1), (2,2), (3,3)}
- Relational approximate temporals

- norm <= ⃝ norm ± ε
6

[1] Michael  D.  Ernst,  Jake  Cockrell,  William  G.  Griswold,  and  David  Notkin.   Dynamically  discovering likely  program  invariants  to  support  program  evolution.IEEE  
Transactions  on  Software  Engineering, 27(2):99–123, February 2001.
[2] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. 
Softw. Eng. Methodol. 23, 4, Article 30 (September 2014), 30 pages. DOI:https://doi.org/10.1145/2556782
[3] Mark Gabel and Zhendong Su. Javert:  fully automatic  mining  of  general  temporal  properties from dynamic traces.  In SIGSOFT FSE, 2008.



Relational Data Structures
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1 1       2

Scalar Vectors Matrices Tensors Graphs

1       2

2       4

   1    2    5    2

   7    2   3    2

State of the art 

Proposed Work

A = null
X < 20
B → A

Arr1 = Arr2
len(Arr1) = 5

mat isInvertible tensor isSparse graph isAcyclic
graph isComplete 



Problem Space

- Swarm projects collected 
from Github

- Measurably mature 
systems

- ~50 commits
- ~750 SLOC
- Had simulation
- Reference papers

- Data structures of interest
- Nonzero count for all projects
- Average 9.92 per project
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Problem Space
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Approach -- Overview

1. Investigate potentially useful invariant patterns through 
code analysis.
a. How are data structures of interest operated upon?
b. How are they used?

2. Expand upon existing inference techniques according to 
potentially useful patterns.

3. Optimize inference techniques for the domain of relational 
data structure invariants.

14



Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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- Organized into 5 families
- Extensible

- Not exhaustive
- Generally applicable 

patterns rather than overly 
specific to systems in 
problem space

- Chosen for applicability to 
relational data structures, swarm 
behavior, or commonly used to 
describe number sets



Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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Linear Algebraic 
Invariant Patterns - Family of invariants not present in 

previous work

- Linear algebra meant to characterize 
high-dimensional data structures

- Used in basic proofs and theorems or 
came up in code analysis

- Can be combined to point to theorems

- E.g. Dimension theorem[1]

[1] https://math.mit.edu/~gs/linearalgebra/linearalgebra5_6Great.pdf

https://math.mit.edu/~gs/linearalgebra/linearalgebra5_6Great.pdf


Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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Linear Algebraic Invariant Patterns

- isSymmetric == True
- Potential optimization point

- isPositive == True
- Check for bugs

- Norm == 2.828
- Measure of dispersion

- Determinant == -4.0
- Measure of average variance

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 2
2 0

timestep : n

0 2
2 0

timestep : n+1



Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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Distributions 
Invariant Patterns

- Account for noise inherent in robotic 
systems

- Characterize values occurring in data 
structures

- max == 2
- min == 0
- mat.gaussian(1, 1)

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 2
2 0

timestep : n

0 2
2 0

timestep : n+1



Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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Bounds
Invariant Patterns

- Account for noise inherent in robotic 
systems

- Epsilon comparison as defined by user

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 2
2 0

timestep : n

0 2
2 0

timestep : n+1

- determinant < norm
- mean == 1
- mean < max
- mean < rank



Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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Subswarms
Invariant Patterns

- Parts of the data structure that hold the 
same (or similar) values at any given 
timestep

- Reveal interdependent values/cells in 
data structure

0 2
2 0

timestep : 0

0 2
2 0

timestep : 1 …….

0 1
1 0

timestep : n timestep : n+1

- subswarm ([0,0], [1,1])
- subswarm ([0,1], [1,0])

0     1.1
1.1 0



Approach -- Patterns

1. Investigate potentially useful invariant patterns.
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Temporals
Invariant Patterns

- Arrived at through analysis of swarm 
behavior

- Next: evolution of swarm behavior 
over runtime

- Eventually: reaching a setpoint
- Eventually always: reaching a 

stable equilibrium

0 .2
.2 0

timestep : 0

0 .3
.3 0

timestep : 1 …….

0 .7
.7 0

timestep : n

0 .7
.7 0

timestep : n+1

- mean < ⃝ mean
- ♢▢ max == 0.7
- ♢▢ norm == 0.9



Approach -- Overview

2. Expand upon existing inference techniques.
3. Optimize inference techniques for the domain of relational 

data structure invariants.
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Approach -- Inference

2. Expand upon existing inference techniques.
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Approach -- Inference

2. Expand upon existing inference techniques.
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- Input: trace, set of patterns
- Output: hashtable containing True/False 

evaluation for all possible linear algebraic 
invariants

- isInvertible == True
- General steps:

- For each pattern, iterate through trace
- Pattern holds at that step → increment 

support for that pattern
- Pattern does not hold at that step → 

abort evaluation
- End of the trace has been reached → 

Check that support is sufficient



Approach -- Inference

2. Expand upon existing inference techniques.

25

0 .2
.2 0timestep : 0

0 .3
.3 0timestep : 1

…….

0 .7
.7 0timestep : n

0 .7
.7 0

timestep : n+1

predicate: matrix.max <= 0.7
Trace Pattern Confidence

matrix.max = 
0.2

matrix.max = 
0.3

matrix.max = 
0.7

matrix.max = 
0.7

1 - (1 / 12) = 0

1 - (1 / 22) = 0.75

1 - (1 / n2) = ...

1 - (1 / (n+1)2) = ...

…….



Approach -- Inference

2. Expand upon existing inference techniques.
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- Input: trace, set of patterns
- Output: True/False evaluation for all possible 

eventually always invariants
- ♢▢ isInvertible

- General steps:
- For each pattern, iterate through trace
- If pattern holds at that step, increment 

support for that pattern
- Pattern does not hold → is there enough 

of the trace left for it to receive sufficient 
support?



Approach -- Inference

2. Expand upon existing inference techniques.
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0 .2
.2 0timestep : 0

0 .3
.3 0timestep : 1

…….

0 .7
.7 0timestep : n

0 .7
.7 0

timestep : n+1

predicate: ♢▢ matrix.max == 0.7
Trace Pattern Confidence

matrix.max = 
0.2

matrix.max = 
0.3

matrix.max = 
0.7

matrix.max = 
0.7

1 - (1 / 12) = 0

1 - (1 / 12) = 0

1 - (1 / 12) = 0

1 - (1 / 22) = 0.75

…….



Approach -- Optimization

3. Optimize inference techniques for the domain of relational 
data structure invariants.
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- Occupancy grid from one of the three case 
study projects

- In code: 80 x 80 cell grid
- Visually: 20 x 20 cell grid

- Want to “zoom out” and deal with an 
abstracted version of this occupancy grid

- N.b. This is not the only optimization technique 
that could be applied to this occupancy grid



Research Questions

1. Are the posited invariant patterns for relational data structures upheld in 
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful 
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further 
patterns or further expansion of inference techniques?

4. What is the cost associated with generating the posited families of 
invariants?
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Study -- Setup
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1. Run system in simulation using unperturbed configuration.

2. Run again in adversarially perturbed configuration.

3. Diff invariants generated for both perturbed and 
unperturbed configurations.



Study -- Results
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Study -- Results
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- Posited invariants are upheld
- Some invariants can distinguish 

between some successful and 
failed runs

- Could expand library to better 
distinguish between minimal failure 
and catastrophic failure



Research Questions

1. Are the posited invariant patterns for relational data structures upheld in 
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful 
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further 
patterns or further expansion of inference techniques?

4. What is the cost associated with generating the posited families of 
invariants?
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Summary
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Contributions

- Expanded inference techniques

- Optimization for larger data structures

- Benchmark of swarm systems

Future Work

- Apply approach to new systems
- Heterogeneous cooperative robotic systems
- Jointed robotic arms
- Neural networks

- Expanded pattern library

- Approximate pattern matching



Thank You!
Questions
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Readings
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Invariants — Focus Readings

1. Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst,and Arvind Krishnamurthy. Inferring models of concurrent systems from logs of their 
behavior with csight. In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, page 468–479, New York, 
NY, USA, 2014. Association for Computing Machinery.

2. Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: Dynamic symbolic execution for invariant inference. In Proceedings of 
the 30th International Conference on Software Engineering, ICSE ’08, page 281–290, New York, NY, USA, 2008.Association for Computing 
Machinery.

3. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely program invariants to support 
program evolution. IEEE Transactions on Software Engineering, 27(2):99–123, February 2001.

4. Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.

5. Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Dig: A dynamic invariant generator for polynomial and array 
invariants. ACM Trans. Softw. Eng. Methodol., 23(4):30:1–30:30, September 2014.

6. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Perracotta: Mining temporal api rules from imperfect 
traces. In Proceedings of the 28th International Conference on Software Engineering, ICSE ’06, pages 282–291, 2006.
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Invariants — Background Readings

1. Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank based fault localization approach using likely invariants. In 
Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, page 177–188, New York, NY, USA, 2016. 
Association for Computing Machinery.

2. Hengle Jiang, Sebastian G. Elbaum, and Carrick Detweiler. Inferring and monitoring invariants in robotic systems. Auton. Robots, 
41(4):1027–1046, 2017.

3. Tien-Duy B. Le and David Lo. Deep specification mining. In Proceedings of the 27th ACM SIGSOFT- International Symposium on Software 
Testing and Analysis, ISSTA 2018, page 106–117, New York, NY,USA, 2018. Association for Computing Machinery.

4. L. Grunske. Specification patterns for probabilistic quality properties. In 2008 ACM/IEEE 30th International Conference on Software 
Engineering, pages 31–40, May 2008.
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Supplementary Slides
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Approach -- Optimization

3. Optimize inference techniques for the domain of relational 
data structure invariants.
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TODO: 
Add 
exampl
e of 
what 
this alg 
does to 
a big 
matrix



Approach -- Optimization

3. Optimize inference techniques for the domain of relational 
data structure invariants.
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Study -- Results for Case Study #2
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Study -- Results for Case Study #3
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- Performance data collected from small 
trace

- 2500 instances of 8-cell by 8-cell 
matrices of type double

- Subswarms invariant inference 
benefits most from parallelization

Study -- Performance
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Example -- Neural Network
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Weaknesses of Invariants
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Inference Processes

Frequentist

Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.
Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000. Quickly detecting relevant program invariants. In Proceedings of the 22nd international conference on Software engineering (ICSE '00). ACM, New York, NY, USA, 449-458. 
See Slide 15 for further references

Bayesian

Temporal

EventA == True

P(EventA==True | EventB==True) == 66%

EventA, EventB, EventA, EventB, … == True
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Invariants - suggested complement or alternative to 
introduce invariants… 
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OBJECT INVARIANTS
this.theArray != null
this.topOfStack >= -1
this.topOfStack <= size(this.theArray[])-1

INVARIANTS AFTER THIS RETURN
return == this.theArray[this.topOfStack]
return == this.theArray[orig(this.topOfStack)]
return == orig(this.theArray[post(this.topOfStack)])
return == orig(this.theArray[this.topOfStack])
this.topOfStack >= 0
return != null

public class StackAr{
           
        private Object [ ] theArray;
        private int        topOfStack;

       public StackAr( int capacity )
        {
            theArray = new Object[ capacity ];
            topOfStack = -1;
        }

…
public Object top( ) {

if( isEmpty( ) )
return null;

return theArray[ topOfStack ];
}
...

} Generated by Daikon from a Stack.Ar Java Class



Approach -- alternative slide to show algorithm
Expand upon existing inference techniques

eventuallyAlways(trace, pattern){
instantiated = False
foreach record in Trace

confidence = 1 - 1/(trace.len - trace.index(record))2

if pattern.eval(record)
instantiated = True

else 
if confidence < 0.95 || instantiated==True

return False
return True

}

predicate: matrixD.determinant = -56

Trace

1       2
2       4

1       2
5       4

1      1
2       4

1      1
2       4

1      1
2       4

matrixD.det = 0

matrixD.det = -6

matrixD.det = 2

matrixD.det = 2

matrixD.det = 2

Pattern Confidence Instantiated Return



Problem Space

Var space Rel Var Language

Environments

VectorsScalars Others


