
Qualifying Examination Final Report:

Implicit Invariants for Relational Data Structures

Meriel Stein

May 13, 2020

Abstract

Robotics utilizes algorithms for control, localization, and
navigation that rely heavily on complex data structures
such as matrices and graphs. The values of these data
structures are the result of interleaved controllers and
complex interactions between equations that are diffi-
cult to parameterize as they relate to observed behav-
ior. This makes the behavior, consistency, and main-
tenance of these data structures both difficult to track
and highly critical to the successful operation of the sys-
tem. Therefore, there is a demonstrable need to generate
new types of invariants to better characterize the con-
nection between control behavior and robustness. This
work builds and generates novel invariants to capture the
behavior of these complex data structures in both instan-
taneous and time-bounded contexts. Then, this invariant
generation is applied to a testbed of simulated robotic
system deployments. Capturing these invariants will en-
able the discovery of relations between member variables
and model how data structures change over time.

1 Introduction

Program invariants describe truisms about a given sys-
tem. When the system behaves unexpectedly, these tru-
isms are often violated and the developer is tasked with
the challenge of repairing the system to accommodate
these surprise behaviors. This is especially true in the
field of robotics, where behavior is often nondetermin-
istic and developers cannot fully anticipate nor capture
factors affecting operation.

Due to the multi-dimensionality of the space within
which robots operate, their operation relies on high-
dimensional data structures such as vectors, matrices, and
graphs. These data structures are used in multiple places
in the source code, collectively manipulated by multiple
swarm agents, and/or passed between members and sub-
systems of the swarm.

The way these structures are operated upon can tell
us much about the behavior of the system. Additionally,
these data structures can tell us when the system’s be-
havior is aberrant. Depending on the method with which
invariants are inferred, invariants can leverage the way in-
formation is encoded into these data structures to tell us

much about how the system is designed. One promising
area for invariants is that of relational data structures.

This research seeks to explore implicitly encoded in-
variants for complex robotic systems whose runtime be-
havior is determined by control algorithms and to develop
unique invariant patterns to effectively capture character-
istics of their behavior. As these characteristics are often
stored in data structures in the source code, these invari-
ant patterns are meant to reveal characteristics of those
data structures.

The goals of this project are to automatically infer
such complex, subtle, but valuable invariants, which cur-
rent approaches do not address. Current approaches are
limited in their ability to infer relational characteristics
within complex, arbitrarily large data structures in time
series and to support the instantiation of patterns per-
tinent to those data structures. These data structures
evolve with system behavior in relation to space and time,
and so these invariants would be based on spatial struc-
tures and timely responses, something typical invariant
inference techniques do not account for. Further detail
is given in Section 3. I propose to explore new patterns
for likely data structure invariants, and prototype infer-
ence tools to infer those patterns. To test these tools, I
have applied them to existing cooperative systems to de-
termine the prevalence of these patterns and determine
whether they can be extracted from system traces and
determined whether these patterns are effective at char-
acterizing robustness and liveness properties by compar-
ing the resulting inferred invariants across traces from
successful and failed runs.

The hope is to expose invariants that point to system
optimization, unaddressed vulnerabilities, and defensive
strategies to increase robustness found through diffing in-
variants over successful and failed runs.

This paper presents the following contributions:

1. A frequentist inference engine to consume system
traces and generate invariants for relational data
structures.

2. A set of optimizations to that engine that reduce
trace processing and abstract these data structures
in a way that preserves their characteristics.

3. A library of patterns with demonstrable useful ap-

1

plication to relational data structures.

2 Motivation

Storing values together in a data structure implies a cer-
tain degree of interrelation between those values. This
work aims to leverage that implied interrelation to char-
acterize the system as a whole and to use the charac-
teristics of these data structures to differentiate between
successful and failed runs.

The intuition behind analysis of swarm algorithms is
that relational data structures change more as the swarm
is working to reach and/or maintain equilibrium, then see
minimal change once the system is in a state of equilib-
rium.

Take the motivating example of a swarm meant to
evenly disperse over a given area. After the swarm is ran-
domly populated in the given environment, swarm mem-
bers use attractive and repulsive force equations to de-
termine the speed with which they actuate. Unless the
swarm happens to be randomly populated in a configu-
ration close to its final configuration, this speed will be
faster at first and slow as the swarm is close to being
evenly dispersed. This manifests in predictable rates of
change in the distance matrix tracking the distance be-
tween members of the swarm. Additionally, all values
in the distance matrix should be positive if they are Eu-
clidean distances, and the matrix should be symmetric, as
the distance from Robot 1 to Robot 6 is the same as the
distance from Robot 6 to Robot 1. This distance matrix
is collated from each member in the swarm calculating its
distance from the swarm members it can sense.

These types of invariants cannot be inferred by existing
invariant generation techniques, which tend to focus on
single variables within linear programming paradigms.

As a collective, these invariants describe distance ma-
trices, but can be applied to other structures. This work
aims to develop a diverse library of invariant patterns
for relational data structures and an engine capable of
instantiating them for large traces.

2.1 Problem Space

The problem space was restricted to swarms for several
reasons. One, swarms have highly interdependent com-
ponents that can be readily observed and so an observer
can gain an intuitive sense of the swarm’s invariants and
the patterns of behavior it exhibits over time. Addition-
ally, those interdependent components are tracked in re-
lational data structures whose values are constantly up-
dating and the size of which are often scalable. Finally,
swarms are capable of a range of potential behaviors,
from simple to complex, that are sensitive to the environ-
ment in which they are deployed and thus have a variable
propensity for failure.

I quantified the problem space for this work by collect-
ing open source Robot Operating System (ROS) projects

for swarms and cooperative robotic systems, then mined
the source code for relevant data structures and explored
potential commonalities. Putting together a set of swarm
systems representative of the types of systems found “in
the wild” confirmed that the motivating example gen-
eralizes to other swarms and heterogeneous cooperative
robotic systems. These swarm projects were scraped from
public Github repositories using permutations of three
sets of keywords. The first set constricted the languages
to python and C++, repository topics to ROS, and sorted
by either stars, forks, or help wanted issues. The second
list consists of terms pertaining to multi-robot systems:
[{“multi”, “cooperative”}+{“ugv”, “turtlebot”, “uav”,
“husky”, “vehicle”, “robot”}, “swarm”]. The last list
configures results to prioritize swarm projects including
simulations.

The scraped repositories were then pared down by ma-
turity and how representative they are of swarms in de-
ployment. Maturity was measured by number of com-
mits, source lines of code, and the inclusion of a simulator.
How representative they are is determined by the types of
missions the system can perform, dependencies used, and
whether the project cites any papers. The top 25 systems
are listed in Table 1. System repositories are ordered by
maturity. Repositories with high commits, high source
lines of code (SLOC), and which use or include a demo
with a simulation platform appear first.

To understand the behavior of complex robotic sys-
tems, I have investigated data structures in the source
code which are closely tied to the behavioral specifications
of the robot and thus critical to its functionality. Critical-
ity was determined according to whether the data struc-
ture was published or updated at each cycle of the ROS
control loop and whether its values could be used to deter-
mine whether the system had reached its goal. Matrices
and point clouds containing sensing data, velocity vectors,
and maps of the environment within which the robotic
system operates would be counted as relevant because
they are critical to the functionality of the robotic sys-
tem. An array of strings corresponding to named states
of the robotic system is less likely to be. Surveys on con-
trol algorithms tend to feature complex data structures in
their implementations [14, 19]. These data structures are
further complicated in later, more sophisticated robotics
projects [4, 9], showing the ubiquity of these structures.
Moreover, sensor data is often stored in relational data
structures such as arrays and point clouds [7].

Preliminary analysis has been performed on the code
bases in Table 1 whose control paradigms mirror early
papers on ground and aerial swarm functionality. I col-
lected all the numerically typed data structures present
in these projects. This was accomplished by grepping
for data types in C++ projects or constructor invoca-
tions in Python and tracing their usage and manipulation
throughout the code. C++ data types were those of type
std :: vector, std :: list, and std :: array with numerical
types, those same collections containing pointers to collec-

2

GITHUB REPOSITORY COMMITS SLOC LANG. ROS? SIM?
DATA STRUCTS
OF INTEREST

yangliu28/swarm robot ros sim 198 3,152 C++ Y Gazebo 8
xuefengchang/micros swarm framework 182 8,990 C++, python Y Rviz 18
lucascoelhof/voronoi hsi 76 1,484 python Y Stage 19
or-tal-robotics/mcl pi 98 706 python Y Rviz 10
terna/SLAPP3 145 5,772 python N Turtle 4
hanruihua/slave multirobot 59 6,444 C++ Y Matplotlib 4
raoshashank/
Multi-Robot-Decentralized-Graph-Exploration

83 1,435 C++, python Y Gazebo 6

USC-ACTLab/crazyswarm 341 5,912 C++ Y Cfsim 10
mehdish89/UR5 Cooperative Transform 582 4,238 C++ Y Rviz, Gazebo 12
david-alejo/thermal ws 52 6,469 python Y Marble 17
aarow1/cooperative cable transport vision 197 3,442 C++ Y Rviz 12
awerenne/multi-robot-mapping 75 3,667 python N pygame 5
CARMinesDouai/
MultiRobotExplorationPackages

104 56,504 C++ Y Gazebo 4

Koll-Stone/Efficient sche cov 47 774 python N Matplotlib 7
ThomDietrich/multiUAV-simulation 319 4,867 C++ Y OMNet++ 5
afrl-rq/OpenUxAS 706 464,238 C++, python Y Amase 25
mrsd16teamd/MrdRRT 103 1,770 python Y matplotlib 6
correlllab/cu-droplet 770 12,008 C++ N Qt 10
aau-ros/aau multi robot 102 15,834 C++ Y N 26
gondsm/mrgs 363 2,315 C++ Y N 10
BasJ93/MinorAR MultiRobot 244 4,088 C++, python Y N 2
mzahana/formation 80 1,331 python Y Gazebo 8
bramtoula/multi robot SLAM separators 189 4,694 C++ Y N 5
jimjing/MandM 65 2,831 python Y Rviz 8
umass-rbr/multiagent-sas 163 1,257 python Y N 7

Table 1: Table of swarm projects.

tions with numerical types, std :: matrix, std :: map, and
project-specific object types with similar keywords in the
class name. Python code was examined for variables con-
taining a dict, list, or numpy object such as numpy.array
or numpy.matrix. These data types are often used to in-
stantiate ROS messages. C++ data structures std :: set
and std :: multiset and Python data structure set were
not considered as they were not common across systems.

The data structures were further analyzed for their
role in meeting the behavioral specifications of the sys-
tem. I examined the data structures present in these
projects for their influence on sensing, kinematic behav-
ior, swarm-wide knowledge and coordination, and control
flow. This was done by grepping for ROS message types
with fields using relational data structures and determin-
ing whether the data structures were used to instantiate
any of these messages. Influence was scored according to
whether they were used to compute new values in pub-
lished messages, whether they were used to determine
program path, and whether they were mutable or not.
They were then pared down according to the relevance
of the variable name and surrounding method names as
they appeared in the source code. This returned a set
of data structures likely to be worth instrumenting, tal-
lied in the “Data structures of interest” column in Table
1. These projects comprise 248 data structures of inter-
est over 624,222 source lines of code, averaging one data
structure of interest being instantiated every 2,517 lines.
The largest of these data structures was difficult to deter-

mine, as these depend on the scalable size of the swarm
or the device driver populating laser scan values, but the
smallest data structures were velocity and Euler angle ori-
entation arrays of length 3 holding (x, y, z) or (roll, pitch,
yaw) values. For one of the motivating example projects
for this work, yangliu28/swarm robot ros sim has 43 one-
dimensional data structures of type std::vector, typed as
double with the exception of 3 which are typed int 32t
and 2 which are typed int. There were also 24 prim-
itive one-dimensional arrays, 12 of type double and 12
of type int, and 28 two-dimensional arrays, 24 of type
double and 4 of type int. These were predominantly
used to store values relating to the individual swarm
members, such as distance from one another, wheel ve-
locities, and feedback from spring equations. By con-
trast, the raoshank/Multi-Robot-Decentralized-Graph-
Exploration project used later in the study has 44 one-
dimensional arrays and 8 two-dimensional arrays. Python
is untyped but based on the operations performed on
them they appear to consistently house doubles. Because
the swarm is decentralized, these are used to house col-
lated swarm-wide information, such as the SLAM-derived
list of vertices and edges that comprises the map of the
environment, and member-level information, such as ve-
locity vectors and values keeping track of where the indi-
vidual robot is within that map. These data structures of
interest were published in a ROS message or encountered
an opportunity to be updated every program loop.

3

3 Related Work

This work draws on several previous papers. Ernst et. al.
[5, 6] established Daikon, one of the benchmark inference
engines for detecting program invariants. Daikon’s engine
creates a field of potential invariants based on a set of pre-
defined invariant patterns and the values found in a trace.
Daikon then evaluates the potential invariants according
to whether there are sufficient samples to support them
and no samples that violate them. This frequentist ap-
proach, prevalent among invariant inference engines, uses
a confidence interval to ascertain that a predicate holds
against some probability of random negation, determined
by the number of samples supporting that predicate. We
follow a similar approach in that our predicates are basic
patterns instantiated by frequentist inference, but with
the addition of epsilon equality comparison, linear tempo-
ral logic operators, and inference optimization techniques
specific to relational data structures. Moreover, our in-
strumentation is dependent on time-series traces as op-
posed to method pre- and post-conditioning.

Hangal & Lam [11] created DIDUCE to perform in-
strumentation and invariant generation of Java bytecode
for “tracked expressions” at various program points to
better find the root of software bugs and to better tai-
lor invariant generation to any given application. This
work takes a similar approach, as instrumentation and
subsequent invariant generation is limited to only data
structures and program points determined to be of inter-
est.

Perracotta [20] extracts temporal API specifications
from traces through a mix of analysis, patterns, and
heuristics. There have been many similar approaches
since, but Perracota was among the first to recognize that
traces, or trace content for that matter, can be noisy, so
it incorporated mechanisms to ignore potential blips of
aberrant behavior patterns as negligible in the context
of the overall trend. Our approach incorporates some
Perracotta techniques to accommodate noisy traces such
as trace sampling, and has the potential to take inspira-
tion from more techniques used by this tool in subsequent
versions. In a similar problem space as Perracotta, Le et.
al [16] use deep learning techniques to improve tempo-
ral specification model accuracy. While this work does
not employ deep learning, it understands the potential
for noise in temporal invariant instantiation. This work
lumps in the need to account for noise in temporal in-
variants through trace sampling and other optimization
techniques further explained in Section 4.3.

In a similar line of work as well, Gabel et al. [8] de-
veloped Javert, a mining framework of temporal logic
invariants. Their approach is similar to many approaches
in terms of combining patterns and incrementally encod-
ing them as FSMs. Their technique of applying machine
learning to instantiate their pattern library and their
strategy to start with simple patterns that can be com-
posed to generate much more complex ones could aug-

ment the approach proposed in this paper. This is dis-
cussed further in future work.

Diverging from temporal logics, Beschastnikh et. al’s
[2] 2014 invariant generation tool CSight puts forth tech-
niques for handling pattern instantiation using times-
tamped logs from concurrent systems. These techniques
produce a finite state model. This approach also lever-
ages timestamped logs from concurrent systems to sam-
ple, maintain consistency, and validate linear temporal
logics patterns.

Delving into invariants specifically for robotics, Jiang
et al. [12, 13] extend the Daikon invariant library to pat-
terns seen in robotic systems in order to derive monitors
that can check system invariants at runtime. While Jiang
et al. introduce invariant patterns tailored to robotic sys-
tems (e.g., bounded time differentials, polygonal relation-
ships between spatial variables), their approach relies on
Daikon to infer these invariants, and so encounters the
same pitfalls.

Other methods of invariant generation were consid-
ered as reference materials for potential inspiration or fu-
ture work. The 2014 invariant engine DIG developed by
Nguyen et. al [18] generates nonlinear and geometric in-
variants over single variables and linear and reachability
invariants for possibly-multidimensional arrays. However,
it does not go beyond selective low-level linear relations
on a element-wise basis, and does not necessarily extend
these relations to account for all of the elements in the
data structure. Nugyen et. al [17] apply similar inference
techniques to symbolic traces in their 2017 tool SymIn-
fer. While analyzing symbolic execution for implicit data
structure invariants is beyond the scope of this work, it
leads to compelling future work. Similarly, Csallner et
al. [3] created DySy, a tool similar to Daikon with an
orthogonal addition of symbolic execution. Symbolic ex-
ecution plus concrete traces observed from executing test
cases allows for the elimination of extraneous and/or re-
dundant invariants that Daikon is susceptible to produc-
ing, which would benefit a future implementation of this
Daikon-adjacent work. For example, an invertible matrix
is also positive and so isPositive could be considered re-
dundant and be removed from invariant output.

Grunkse [10] approaches invariants as a qualitative ex-
pression of requirements, introducing a rich set of specifi-
cation patterns coupled with a structured English gram-
mar to express bounded behavior of a system, instead of
in terms of absolute correctness, in a way that incorpo-
rates expert knowledge of the system and that can be
used for formal verification. Although this work did not
pursue automated inference of invariants, its treatment
of bounded patterns offered a jumping off point for this
work. Grunske’s subsequent work [1] on invariant gen-
eration offers a roadmap to expand this work into ap-
proximate pattern instantiation through machine learn-
ing techniques as well as a technique to cluster similar
test cases.

Other invariant generation papers were considered as

4

potential jumping off points. Similar to claims in this pa-
per, Kusano et al. [15] prove that Daikon produces inac-
curate invariants for mutlithreaded programs. While this
paper addresses that through its instrumentation tech-
nique, Kusano addresses it through invariant types.

4 Approach

Several goals must be met in order to discover invariants
for these systems. The approach of this research is as
follows:

1. Investigate potentially useful invariant patterns.

2. Expand upon existing inference techniques.

3. Optimize inference techniques for the domain of re-
lational data structure invariants.

Figure 1: Overview of invariant generation.

An overview of the coalesced technique to generate in-
variants can be seen in Figure 1. Optimization is per-
formed during the trace preprocess and in early breaks
throughout gathering of invariant support. Support can
be taken from multiple traces.

4.1 Invariant Patterns

While many different invariant patterns could be used to
capture the qualities of relational data structures, these
patterns were prioritized for their ability to capture inter-
dependent features and behaviors of swarms. Criteria for
potentially useful invariant patterns include but are not
limited to patterns that characterize all elements of a data
structure, a subset of elements within a data structure,
or how the elements of the data structure change over
time. Swarm member interdependence is often observ-
able as subswarms, and data structure behavior tends to
converge upon a single value or a cohesive distribution of
values when the swarm is approaching equilibrium. Ad-
ditionally, some persistent characteristics that hold for
the entirety of the system run. For example, because the
behavior of swarms tends to be bounded, e.g. members
cannot be more than x meters away from each other to
maintain connectivity, bound and distribution invariants
were used to capture these characteristics.

These patterns were also chosen for their potential to be
arbitrarily complex. For example, conjunctions of linear

Figure 2: Transformation from 2D LI-
DAR scan to 3D point cloud in CARMines-
Douai/MultiRobotExplorationPackages

algebraic patterns can be used to express more compli-
cated theorems that hold for a given data structure, and
the distributions family of patterns can be extended to
include other types of distributions, such as Poisson and
geometric to capture probabilities associated with peri-
odic equilibria or combined to be multivariate. These
patterns come in a variety of forms, a full accounting of
which can be found in Table 5:

Distribution. Distribution refers to the prevalence of
member values in the matrix. For example, in a dis-
tance matrix for a swarm close to equilibrium for which
the equilibrium distance is 2m, the density of values
that are approximately a multiple of 2 in the distance
matrix should be close to 100%. This can be useful
in identifying subswarms or regions where the swarm
has encountered an adversarial environment and can be
defined as data structure.count(value,ε)

data structure.size , mean == µ, and
variance == σ. A low-variance distribution gives a
better understanding of how the values are concentrated
within the bounds invariants described below.

In the sample code for laser geometry package’s trans-
formLaserScanToPointCloud() in Figure 2, a 2D LIDAR
scan is transformed to a 3D point cloud taking into ac-
count the movement of the robot base during a scan.
The point cloud is filled by interpolating the scan values
using the transformation vector of the robot base from
start transform to end transform, then applying inter-
mediate transformations to the interpolated point cloud
points. For a structure like this, we want to verify that
the point cloud is populated with values that have a dis-
tribution similar to the laser scan.

Shape. Shape refers to the placement of values in
the data structure. For example, a distance matrix
should be symmetric in shape and contain a zero di-
agonal, as the distance between a swarm member and
itself is always zero, and the same distances apply be-
tween swarm member x to swarm member y and vice
versa. These patterns characterizing shape can be de-

5

Figure 3: Update to swarm distance matrix for yan-
gliu28/swarm robot ros sim

fined as a set of boolean expressions, such as diagonal ==
True, upper triangular == False, square == True,
sparse == True, and so on.

The sample code for yangliu28/swarm robot ros sim in
Figure 3 shows how the shape of a distance matrix is
determined.

Algebraic invariants. Algebraic invariants are those
such as invertability, value of the determinant, and ma-
trix rank. These can be useful for determining depen-
dencies within the matrix or whether computations are
incorrect. These patterns can be defined as a set of
boolean invariants as well, such as positive == True,
invertible == True, rank == 3, and so on. For ex-
ample, the distance matrix in Figure 3 must be positive
semi-definite as all columns should be nonzero and all val-
ues should be nonnegative under normal operating con-
ditions.

Bounds. This invariant pattern assigns a maximum and
minimum to the values in a given data structure. This
can be combined with density to determine if a swarm is
close to equilibrium.

For a data structure such as the array of values ob-
tained from a LIDAR scan scan in in Figure 2, no value
in scan in should be greater than the maximum valid dis-
tance for which the LIDAR component is rated, and all
values should be greater than or equal to zero.

Changes over time. This invariant pattern can be com-
bined with the above patterns to capture the evolution-
ary characteristics of swarms. This can be broken up into
regular time intervals or broken up according to signifi-
cant events, such as encountering an obstacle or a vehicle
leaving the swarm.

These invariant patterns are expressed in terms of lin-
ear temporal logics operators: next, eventually, and even-
tually always. As seen in the results tables in Section 5,
next and eventually always provided the most valuable
insights into swarm behavior.

The C++ std :: map < int,NeighborBase > in
xuefengchang/micros swarm framework in Figure 4 maps
swarm members’ runtime states to their identifiers. In a
swarm tasked with dispersing evenly across a map, the

Figure 4: Method to track swarm members enter-
ing, leaving, or adjusting their position and orientation
within the swarm from ROS package repository xue-
fengchang/micros swarm framework.

velocities of the swarm members should decrease as the
swarm reaches equilibrium and so the vx and vy members
of all NeighborBase objects in neighbors should decrease
over time.

Subswarms. Discovering subswarms is the finding of
portions of a data structure that hold the same values
within a user-specified epsilon ball for the lifetime of the
swarm. Their values are not necessarily static but rather
change together and so hold the same values as one an-
other. Due to the high interdependence of swarm member
behavior, these emergent patterns have the potential to
show vulnerabilities and opportunities for optimization in
swarm behavior.

4.2 Expanded Inference Techniques

The approach to learn likely invariants begins with an
analysis of events in a set of traces. Events are developer-
determined for the system under test according to how the
code is instrumented. For example, if the code is instru-
mented after a method call manipulating a data structure,
the event would be the change to that data structure.
The frequency of an event is tallied over the course of the
trace, and its confidence interval is computed. A typical
confidence interval is computed as 1 − 1

n2 , n being the
event tally.

Likely invariants were generated from traces provided
to a frequentist inference engine supplied with the pat-
terns discussed in Section 4.1. Invariants that held with
a confidence interval of 95% or greater were determined
to be likely invariants. This confidence threshold of 95%
is a standard in frequentist inference.

In order to handle inaccurate measurements and ran-
dom noise, basic frequentist inference was expanded to

6

include fuzzy comparison by incorporating a parameter-
ized epsilon term set by the user. Epsilon values for all
projects was set to 0.1 to facilitate comparison of results
across projects. Additionally, in order to handle trends
over time, basic frequentist inference was expanded to in-
clude trace lookahead. “Heavy hitter” sampling allowed
for additional space-saving measures by hashing the at-
tributes of events that pass 30 samples (a threshold set
by the Central Limit Theorem) for future comparison.

Algorithm 1 shows the basic frequentist instantia-
tion and support of invariant patterns, which must be
true throughout the trace. The trace is checked at all
timesteps for support of the pattern, and the number of
supporting samples is checked against the confidence in-
terval of 0.95 for the invariant to be considered upheld
and returned.

Algorithm 2 exemplifies the frequentist approach to in-
stantiating temporal invariants. For each potential invari-
ant pattern, the trace is processed to see if the invariant
holds at a given timestep. If it does hold, it must hold for
the rest of the trace or the instantiation is thrown away.
If the trace is too close to the end for enough samples
to be present to support this pattern, the instantiation
is thrown away. This pseudocode assumes that the trace
has already been preprocessed (i.e. sampled, rounded,
etc.) according to the needs of the developer using opti-
mization techniques discussed in Section 4.3

Algorithm 1: Inference for linear algebraic oper-
ators
Input: trace, patterns
Output: results

1 results = dict();
2 foreach pattern in patterns do
3 foreach record in trace do
4 if pattern.eval(record) then
5 results.put(pattern, True);

pattern.count++;
6 else
7 results.put(pattern, False); break;
8 end

9 end

10 if results.get(pattern) ∧ 1− 1
pattern.count2 <

0.95 then
11 results.put(pattern, False);
12 end

13 end
14 return results;

4.3 Optimization Techniques

Due to the massive scale of these traces, which produce
two-dimensional data structures at an average rate of 335
milliseconds, traces containing more than 100 data struc-
tures were sampled at a parameterized rate of 20%. This

Algorithm 2: Inference for “eventually always”
temporal operator

Input: trace, patterns
Output: results

1 results = dict();
2 foreach pattern in patterns do
3 instantiated = False;
4 foreach record in trace do
5 highest possible conf interval = 1 -

1
(trace.length−trace.index(record))2 ;

6 if pattern.eval(record) then
7 instantiated = True;
8 else if not pattern.eval(record) then
9 instantiated = False;

10 end
11 if highest possible conf interval < 0.95

then
12 results.put(pattern, False); break;
13 end

14 end
15 results.put(pattern, True);

16 end
17 return results;

is meant to handle the potentially nonlinear progression
of swarm behavior due to noise as well as the problem of
large traces.

An additional technique was explored to handle large
relational data structures. Users have to option to ab-
stract sequences of cells in the data structure by con-
densing them into one cell, by representing them as the
average or maximum value. Average is useful in the case
of similar readings, such as a LaserScan array, and max-
imum is useful in terms of discrete values, such as an
OccupancyGrid matrix. While this technique can be ap-
plied to speed the processing of larger data structures, it
can also be used to abstract smaller ones for readability.

Algorithm 3 shows the steps taken to reduce a matrix
by a given factor. First, the size of the new matrix is com-
puted according to approximate reduction by the factor
and dimensions are computed according to the ratio of
rows to columns in the old matrix. Then, according to
whether the matrix is of a discrete type or not, the max
or average of the factor nearest cells is used to represent
these cells in the new matrix.

5 Study

This section is meant to address the following research
questions:

1. Are the posited invariant patterns for relational data
structures upheld in practice by robotic systems with
high interdependence (swarms)?

7

Algorithm 3: Optimization pseudocode

Input: trace, factor
Output: new trace

1 size = trace[0].rows × trace[0].columns / factor;
2 ratio = round(trace[0].rows / trace[0].columns);

3 rows = size
(factor×ratio) ;

4 cols = size
(factor/ratio) ;

5 new trace = [];
6 foreach matrix in trace do
7 new matrix = [rows][cols];
8 foreach cell in new matrix do
9 nearest cells = get nearest cells(cell.row,

cell.col, factor, matrix);
10 if matrix.type is int ∨ matrix.type is bool

then
11 cell = max(nearest cells);
12 else
13 cell = avg(nearest cells);
14 end

15 end
16 new trace.append(new matrix);

17 end
18 return new trace;

2. Can these invariant patterns be used to differenti-
ate between successful and failed behaviors of these
swarms?

3. Do the findings for the above two questions suggest
the need for further patterns or further expansion of
inference techniques?

4. What is the cost associated with generating the
posited families of invariants?

Three ROS projects from Table 1 were chosen for their
high level of system maturity and diversity of mission ob-
jectives. These projects’ demos were run as intended by
their developers, then the physical environment was ad-
versarially perturbed in order to force a failure and the
demos were re-run. Traces were collected from successful
and adversarially perturbed runs. Success and failure is a
system-specific metric based on code inspection and high-
level system specifications. Then, likely invariants were
generated, checked against system specifications and ob-
servable behavior to determine if they were sound, and
compared over successful and failed runs. The gathered
systems were run in simulation in order to analyze swarm
deployments by manipulating the operating environments
for noise and fault induction through changes such as
spawning location, friction coefficients, and manipulation
via obstacles.

5.1 yangliu28/swarm robot ros sim1

Because this project employs a centralized controller,
ROS message passing is limited to velocity commands be-
tween the controller and Gazebo with little understand-
ing of how those velocities are generated under the hood.
Analysis of this project focused on data structures within
the controller, specifically a distance matrix and a near-
est neighbor matrix. Results for the 8 by 8 cell distance
matrix are discussed here.

Generated invariants for a distance matrix can be seen
in Table 2. These invariants are from one 97.6-second run
of a successful line-formation trace, which are then com-
pared to a 120-second run in an adversarially perturbed
environment containing two obstacles directly in the path
of line formation in the fourth column, and a 60-second
run in and adversarially perturbed environment derived
from a satellite laser scan of a natural environment con-
taining mountains, valleys, and generally uneven terrain
in the fifth column. Of the 19 invariants upheld by the
trace, 12 are of the linear algebraic type. This is likely
because the operations performed on the data structure
inform the linear algebraic invariants it exhibits. These
invariants can be further interpreted through intuitive un-
derstanding of linear algebra, such as the norm indicating
the area in space that the matrix describes.

Bound and distribution invariants are more easily up-
held, because the entire trace can be used as samples
to support the invariant. Therefore, if the trace is long
enough, these invariants will always be upheld, though
the values may change from trace to trace.

Temporal invariants for this swarm were expected in
the successful case. The distance between each neigh-
bor in the line was set to 0.7, so the mode of the data
structure should eventually always settle close to 0.7 in
the successful case. However, it is surprising that the
determinant settled to be -56.96 in both the successful
case and mildly perturbed case, but was violated in the
mountain environment. As the determinant is intuitively
thought of as the standard variance of the elements in
the matrix, this becomes a bit more expected and under-
standable. The same goes for the norm eventually always
being equal to 28.30, which is intuitively thought of as
the size of the subspace described by the matrix.

Although there were subswarms that emerged for sig-
nificant portions of the trace, frequentist inference re-
quires that all samples exhibit an invariant for that in-
variant to be upheld. Therefore, no subswarms were de-
tected. This type of invariant could be uncovered by
different types of inference techniques or in combination
with other types of invariant patterns, such as Bayesian
inference or temporal logics patterns.

Moreover, it is worth reiterating that these patterns
make no domain-specific assumptions about the data
structures they receive. For example, if a distance of
− 1 were to indicate that the robot in question is not

1https://github.com/yangliu28/swarm robot ros sim

8

Figure 5: Unsuccessful end condition of run of yangliu
line formation swarm with two obstacles.

Figure 6: Unsuccessful end condition of run of yangliu
line formation swarm in mountainous environment.

detectable, that logical jump is not encoded into the in-
ference engine. For this reason, the patterns available to
the inference engine are as generic as possible.

5.2 raoshank/Multi-Robot-
Decentralized-Graph-Exploration2

This project is a relatively mature implementation of a
decentralised graph exploration algorithm in Gazebo. A
walled environment is mapped by two robots whose yaw
is randomly generated between -45 and 45 degrees and
whose forward motion is a constant 0.1m/s. LaserScan
readings from both robots are incorporated into a shared
map comprised of a set of vertices describing the explo-
ration space. The 1000-cell LaserScan arrays are dis-
cussed here to provide a study for one-dimensional data
structures employed in similar tasks.

Inferred invariants for LaserScan messages in this
project are shown in Table 3. The linear algebra in-
variants are to be expected, given the shape of the one-
dimensional array and its purpose as storing a sequence

2https://github.com/raoshashank/Multi-Robot-Decentralized-
Graph-Exploration

Figure 7: Multi-Robot-Exploration-Graph after one
robot has become stuck in a corner of the walled envi-
ronment.

of real numbers. The range of the norm is higher than
expected, given the mean of the mean value is 3.357. The
temporal next invariant is expected, given the rank does
not change.

Due to the constant randomized motion and apparent
lack of a stopping condition, there was not enough sup-
port for the possible temporal invariants with eventually
always operators in a successful run because the yaw de-
termining the values of the LaserScan messages does not
stabilize.

It is possible to force unsuccessful runs for this project
through manipulation of the environment. The move-
ments of both robots are constrained to random forward
movements. If a robot finds its way into a corner, it
cannot make its way out because its software preempts
random backwards motion, so it cannot back out of the
corner. Setting one of the robots in a beginning posi-
tion against a wall or too close to a wall will result in
that robot eventually being disabled. This situation was
determined to an unsuccessful run and was the metric
against which invariants were determined to be violated
or not.

This project suggests useful domain-specific extensions
to the invariant pattern library, such as a linear tempo-
ral logic operator “always eventually” that can capture
periodic equilibria.

5.3 lucascoelhof/voronoi hsi3

The voronoi hsi project uses a Voronoi-based strategy to
autonomously disperse a scalable number of ground ve-
hicles to cover non-convex environments. It accomplishes
this through operating upon a universally scoped scalable
matrix mapping the coverage environment with a default
size of 80 by 80 cells, represented as a ROS Occupancy-
Grid message. The demo simulation performs this task
with an 8-vehicle ground swarm.

3https://github.com/lucascoelhof/voronoi hsi

9

Invariant
Type

Invariant Explanation
Obstacle
Violated?

Mountain
Violated?

Shape isSquare==True Data structure is a square matrix. N N
Lin. Alg. isSymmetric==True Data structure is a symmetric matrix. N N
Lin. Alg. isInvertible==True Data structure is invertible. N N
Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values. N N
Lin. Alg. isLinearlyIndependent==True Data structure has linearly independent columns. N N

Lin. Alg. 7.52<= norm <=28.30 The norm of the data structure falls between these values. N Y

Lin. Alg. norm.gaussian(24.28, 5.31)
Norm values of the data structure follow a gaussian
distribution with a mean of 24.28 and
standard deviation of 5.31

N Y

Lin. Alg.
rank == 10
rank.gaussian(10.0, 0.0)

Data structure has rank==10. This makes the gaussian
invariant redundant.

N Y

Lin. Alg.
trace == 0.0
trace.gaussian(0.0, 0.0)

Data structure has trace==0. This makes the gaussian
invariant redundant.

N N

Lin. Alg. isHermitian==True Data structure is a Hermitian matrix. N N
Lin. Alg. -56.96<= determinant <=-0.01 Data structure has determinant between these values. N Y
bound 0.66<= mean <=2.30 Mean of data structure falls between these values. N Y

distribution mean.gaussian(1.98, 0.42)
Mean of data structure follows a gaussian distribution
with a mean of 1.98 and a standard deviation of 0.42.

N Y

bound 0.655<= median <=2.09 Median value of data structure falls between these values. N Y

distribution median.gaussian(1.78, 0.40)
Median of data structure follows a gaussian distribution
with a mean of 1.78 and a standard deviation of 0.40.

N Y

bound 1.33<= maximum <=6.28 Maximum value of data structure falls between these values. N Y

distribution maximum.gaussian(5.44, 1.13)
Maximum of data structure follows a gaussian distribution
with a mean of 5.44 and a standard deviation of 1.13.

N Y

bound
minimum == 0.0
minimum.gaussian(0.0, 0.0)

Minimum value of the data structure is zero. This makes
the gaussian invariant redudant.

N N

subswarm
subswarm: (0,0) (1,1) (2,2) (3,3)
(4,4) (5,5) (6,6) (7,7) (8,8) (9,9)]

Subswarm with (x,y) entries found. N N

temporal © next: norm@t ≤ norm@t+1 Data structure is eventually always not sparse. N N
temporal ♦2 isSparse==False Data structure is eventually always not sparse. N N

temporal ♦2 norm==28.30 Norm is eventually always 28.30. N Y

temporal ♦2 determinant==-56.96 Determinant is eventually always -56.96. N Y
temporal ♦2 mode==0.69 Mode value in data structure is eventually always 0.69. Y Y

Table 2: Invariants generated for distance matrix in yangliu control loop over one successful run.

This was a challenging project in which to force a non-
trivial failure because of the higher level of specification
accompanying the project and the mission itself. As is de-
scribed on the Github page and accompanying references,
the fact that it is meant to function in nonconvex envi-
ronments, uses nonholonomic vehicles whose controllers
exercise 6 degrees of freedom, and has full knowledge of
the environment it is meant to cover, this system does not
present the opportunity for a nontrivial failure. A triv-
ial failure caused by an adversarial manipulation such as
completely blocking access to a part of the environment
essentially results in a new environment. Assuming a fully
known environment, the human supervisor of the swarm
would not issue that command to cover an unreachable
area in the first place. Moreover, the simulation was in
Rviz, a low-fidelity 2D environment specifically for testing
ground vehicle controllers. More subtle adversarial ma-
nipulations such as the mountain environment in Section
5.1 were not possible without considerable changes to the
original simulation that could invalidate the original in-
tention of the system design. Despite applying a number
of adversarial models, it was able to run to completion.
Due to the highly specific system configuration and fully
known potentially nonconvex environment, there was lit-
tle opportunity to create a nontrivial failure in Rviz with-

out altering the source code.
Invariants for this project can be seen in Table 4. The

linear algebra category of invariants in the table is ex-
pected, given the 80 by 80 cell environment and the binary
set of values {0, 100} denoting unoccupied and occupied,
respectively.

Bound and distribution of rank is more surprising. A
more sensitive/configurable for the temporal logics oper-
ators would be interesting to see how this progresses over
time and whether rank increases or decreases over time.

The subswarm invariant shows (x, y) coordinates of the
OccupancyGrid that hold values equal to one another
throughout the lifespan of the swarm run. In this case,
cross-referencing with Figure 8, these seem to be cells
which never become occupied and so their values never
change. In future work with the incorporation of emer-
gent obstacles into the environment, subswarm invariants
could be further utilized to identify vulnerable parts of the
swarm that are affected by these obstacles.

5.4 Cost to Infer

Figure 9 illustrates the time to compute invariants for a
trace containing 2500 instances of 8-cell by 8-cell matrices
of type double, organized by the type of invariants being

10

Invariant
Type

Invariant Explanation Violated?

Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values. N
Lin. Alg. isSymmetric==False Data structure is not a symmetric array. N
Lin. Alg. isComplex==False Data structure contains to complex numbers. N
Lin. Alg. isHermitian==False Data structure is not a Hermitian matrix. N
Lin. Alg. isSparse==False Data structure is not sparse. N
Lin. Alg. rank==1 Data structure rank is 1. N
bound 99.104 ≤ norm ≤ 123.333 Norm of the data structure falls between these values Y

distribution norm.gaussian(111.480, 7.964)
Norm values of the data structure follow a gaussian
distribution with a mean of 111.480 and
standard deviation of 7.964

Y

bound 3.034 ≤ mean ≤ 3.670 Mean of data structure falls between these values Y

distribution mean.gaussian(3.357, 0.205)
Means of the data structure follow a gaussian
distribution with a mean of 3.357 and
standard deviation of 0.205

Y

bound 2.505 ≤ median ≤ 2.638 Medians of data structure fall between these values Y

distribution median.gaussian(2.567, 0.040)
Medians of the data structure follow a gaussian
distribution with a mean of 3.357 and
standard deviation of 0.205

Y

bound 8.060 ≤ maximum ≤ 11.210 Maxima of data structure fall between these values Y

distribution maximum.gaussian(10.536, 1.105)
Maxima of the data structure follow a gaussian
distribution with a mean of 10.536 and
standard deviation of 1.105

Y

bound 0.837 ≤ minimum ≤ 0.873 Minima of data structure fall between these values Y

distribution minimum.gaussian(0.857, 0.006)
Minima of the data structure follow a gaussian
distribution with a mean of 0.857 and
standard deviation of 0.006

mean N, std Y

temporal © rank@t == rank@t+1 Next rank is equal to the preceding rank. N

Table 3: Invariants from Multi-Robot-Exploration-Graph project for LaserScan array.

Invariant
Type

Invariant Explanation

Lin. Alg. isSquare==True Data structure is a square matrix.

Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values.

Lin. Alg. isLinearlyIndependent==False Data structure has linearly independent columns.

Lin. Alg. isHermitian==False Data structure is not a Hermitian matrix.
Lin. Alg. isSparse==True At least half of values in data structure are zero.
bound 8 ≤ rank ≤ 45 Rank of data structure falls between these values.

distribution rank.gaussian(44.026, 5.923)
Rank of data structure follows a gaussian distribution
with a mean of 44.026 and a standard deviation of 5.923.

bound 1897.367 ≤ norm ≤ 4602.173 Norm of data structure falls between these values.

distribution norm.gaussian(4530.994, 432.966)
Norm of data structure follows a gaussian distribution
with a mean of 4530.994 and a standard deviation of 432.966.

bound 5.625 ≤ mean ≤ 33.094 Mean of data structure falls between these values.

distribution mean.gaussian(32.371, 4.397)
Mean of data structure follows a gaussian distribution
with a mean of 32.371 and a standard deviation of 4.397.

bound 2.505 ≤ median ≤ 2.638 Median of the data structure falls between these values.
bound median == 0.0 Median of data structure is 0.0.
bound maximum == 100.0 Maximum of data structure is 100.0.
bound minimum == 0.0 Minimum of data structure is 0.0.

subswarm

(0-1, 0-79), (2-9, 0), (2-9, 1), (2-9, 78),
(2-9, 79), (10-16, 0-1), (10, 48-60),
(11, 46-62), (12, 45-63), (13, 44-64),
(14, 44-65), (15, 43-66), (16, 43-66),
(10-16, 78-79)

Subswarm emerged with these (x,y) entries in data structure.

Table 4: Invariants from voronoi hsi project OccupancyGrid matrix.

computed. The optimized curve shows the runtime in sec-
onds with threading and sampling, and the unoptimized
curve shows runtime without.

Previous works reference time complexity as the most
significant cost to computing invariants for relational data
structures. This is supported by the findings in this work,
which found time to instrument arbitrary according to

user preference and which previous work shows is possi-
ble to automate. As is evident from the figure, optimiza-
tion has a significant impact on time to compute. On
further tests, sampling had the most significant effect on
reducing the time to run for distribution, linear algebraic,
and bounds invariant families by one order of magnitude,
whereas threading had the most significant effect on re-

11

(a) Initialized (b) 20 seconds

(c) 1 minute (d) Finished

Figure 8: voronoi hsi swarm of 8 covering an 80 by 80 cell
OccupancyGrid environment

Figure 9: Runtime to compute invariants for 2501 2D
data structures derived from a 93-second trace.

ducing the additional time to compute subswarms.

6 Conclusions

This paper explored the potential uses of invariants for
relational data structures as they relate to cooperative
robotic systems. The engine itself can operate on 1D and
2D relational data structures with the potential for ex-
tension. It is purposefully not enabled to do so in an

elementwise fashion such as Daikon or in a reachability
sense such as DIG. We assume that individual elements
of the data structure are less interesting to characterize
than the entirety. Experimentation with three real-life
systems shows that this approach is effective at identi-
fying and instantiating patterns that can at least partly
characterize high level system behavior through low level
data structures.

Due to length of traces and size of data structures, the
inference engine is limited to analysing one data struc-
ture at a time. Without hardware upgrades (specifically
CPU memory and speed) or significant parallelization ef-
forts, invariants involving multiple relational data struc-
tures would be prohibitively time-consuming.

6.1 Future Work

These results present several opportunities for future
work. One such avenue is the application of these pat-
terns to similar systems that are similarly dependent on
relational data structures, such as heterogeneous cooper-
ative systems or neural networks.

Another is the extension of the pattern library (see Sec-
tion A) to more patterns anticipated to be useful. This
would go hand in hand with extension of the inference
technique, for example if we want to capture approxi-
mate pattern instantiation. Capturing approximate clas-
sification is something better suited to machine learning
techniques than straightforward linear algebra or elemen-
twise comparison, and so the inference techniques would
need to be augmented.

Overall, these patterns and inference methods show
promise with the systems they have been applied to here,
and could provide further value in future work.

Appendix A Invariant Patterns

As seen in Table 5, a library of patterns was developed
according to what might be useful to capture swarm be-
havior. These patterns are described in Section 4.1.

Appendix B Focus Readings

1. Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst,
and Arvind Krishnamurthy. Inferring models of con-
current systems from logs of their behavior with
csight. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014,
page468–479, New York, NY, USA, 2014. Associ-
ation for Computing Machinery.

2. Christoph Csallner, Nikolai Tillmann, and Yannis
Smaragdakis. Dysy: Dynamic symbolic execution
for invariant inference. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, page 281–290, New York, NY, USA,
2008.Association for Computing Machinery.

12

Invariant Type Pattern Explanation

Lin. Alg. isSquare
x-dimension of data structure == y-dimension of data structure.
Only applicable to 2D data structures.

Lin. Alg. isSymmetric
Value at (x,y) equals value at (x,y) of transposed data
structure. Applicable to 1D and 2D structures.

Lin. Alg. isUpperTriangular
Data structure only contains nonzero values above the diagonal.
Only applicable to 2D data structures.

Lin. Alg. isDiagonal
Data structure only contains nonzero values on the diagonal.
Only applicable to 2D data structures.

Lin. Alg. isInvertible
For data structure A, AA−1 = I. Only applicable to 2D data
structures.

Lin. Alg. isPositive All values in data structure are nonnegative.
Lin. Alg. isLinearlyIndependent Data structure has full rank.

Lin. Alg. norm
Invariants on the norm values of a data structure. Must be
combined with a bound, distribution, or temporal operator.

Lin. Alg. eigs Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. rank Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. trace Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. isComplex Data structure contains complex values.

Lin. Alg. isHermitian
Data structure is a Hermitian matrix.
Only applicable to 2D data structures.

Lin. Alg. determinant Must be combined with a bound, distribution, or temporal operator.

distribution A.gaussian(µ, σ)
x values follow a gaussian distribution with mean µ and standard
deviation σ.

distribution max == x Maximum value of data structure is equal to x.

distribution min == x Minimum value of data structure is equal to x.

distribution mean == x Mean value of data structure is equal to x.

distribution median == x Median value of data structure is equal to x.

distribution mode == x
Mode value of data structure is equal to x. Mode must occur more than
once in individual data structures.

bound A == B A is equivalent to B within a user-defined epsilon ball.
bound A ≤ B A is less than or equal to B within a user-defined epsilon ball.
bound A ≥ B A is greater than or equal to B within a user-defined epsilon ball.
bound A < B A is less than B within a user-defined epsilon ball.
bound A > B A is greater than B within a user-defined epsilon ball.

subswarms {(x1, y1), ... (xn, yn)} The (x,y) values in the set hold the same values within an epsilon ball
at all steps in trace.

temporal © A op B op holds for current A and next B at all steps in the trace.

temporal ♦ A
Eventually, value A appears in trace. Must be combined with a bound
or distribution operator.

temporal ♦2 A
Eventually, value A always appears in trace. Must be combined
with a bound or distribution operator.

Table 5: Currently supported invariant patterns.

3. Michael D. Ernst, Jake Cockrell, William G. Gris-
wold, and David Notkin. Dynamically discovering
likely program invariants to support program evolu-
tion. IEEE Transactions on Software Engineering,
27(2):99–123, February 2001.

4. Mark Gabel and Zhendong Su. Javert: fully auto-
matic mining of general temporal properties from dy-
namic traces. In SIGSOFT FSE, 2008.

5. Thanhvu Nguyen, Deepak Kapur, Westley

Weimer,and Stephanie Forrest. Dig: A dy-
namic invariant generator for polynomial and array
invariants. ACM Trans. Softw. Eng. Methodol.,
23(4):30:1–30:30, September 2014.

6. Jinlin Yang, David Evans, Deepali Bhardwaj, Thiru-
malesh Bhat, and Manuvir Das. Perracotta: Mining
temporal api rules from imperfect traces. In Proceed-
ings of the 28th International Conference on Soft-
ware Engineering, ICSE ’06, pages 282–291, 2006.

13

Appendix C Background Read-
ings

1. Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars
Grunske. A learning-to-rank based fault localization
approach using likely invariants. In Proceedings of
the 25th International Symposium on Software Test-
ing and Analysis, ISSTA 2016, page177–188, New
York, NY, USA, 2016. Association for Computing
Machinery.

2. L. Grunske. Specification patterns for probabilistic
quality properties. In 2008 ACM/IEEE 30th Inter-
national Conference on Software Engineering, pages
31–40, May 2008.

3. Tien-Duy B. Le and David Lo. Deep specification
mining. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2018, page 106–117, New York,
NY,USA, 2018. Association for Computing Machin-
ery.

References

[1] Tien-Duy B. Le, David Lo, Claire Le Goues, and
Lars Grunske. A learning-to-rank based fault lo-
calization approach using likely invariants. In Pro-
ceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, page
177–188, New York, NY, USA, 2016. Association for
Computing Machinery.

[2] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst,
and Arvind Krishnamurthy. Inferring models of con-
current systems from logs of their behavior with
csight. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, page
468–479, New York, NY, USA, 2014. Association for
Computing Machinery.

[3] Christoph Csallner, Nikolai Tillmann, and Yannis
Smaragdakis. Dysy: Dynamic symbolic execution
for invariant inference. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, page 281–290, New York, NY, USA, 2008.
Association for Computing Machinery.

[4] D. V. Dimarogonas and K. J. Kyriakopoulos. Con-
nectedness preserving distributed swarm aggregation
for multiple kinematic robots. IEEE Transactions on
Robotics, 24(5):1213–1223, Oct 2008.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants. In
Science of Computer Programming, volume 69, pages
35–45, 2007.

[6] Michael D. Ernst, Jake Cockrell, William G. Gris-
wold, and David Notkin. Dynamically discovering
likely program invariants to support program evolu-
tion. IEEE Transactions on Software Engineering,
27(2):99–123, February 2001.

[7] Open Source Robotics Foundation. Robot operating
system: Sensor messages. http://wiki.ros.org/

sensor_msgs, 2019.

[8] Mark Gabel and Zhendong Su. Javert: fully au-
tomatic mining of general temporal properties from
dynamic traces. In SIGSOFT FSE, 2008.

[9] N. Goddemeier, K. Daniel, and C. Wietfeld. Role-
based connectivity management with realistic air-to-
ground channels for cooperative uavs. IEEE Journal
on Selected Areas in Communications, 30(5):951–
963, June 2012.

[10] L. Grunske. Specification patterns for probabilistic
quality properties. In 2008 ACM/IEEE 30th Inter-
national Conference on Software Engineering, pages
31–40, May 2008.

[11] Sudheendra Hangal and Monica S. Lam. Tracking
down software bugs using automatic anomaly de-
tection. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, page
291–301, New York, NY, USA, 2002. Association for
Computing Machinery.

[12] Hengle Jiang, Sebastian G. Elbaum, and Carrick
Detweiler. Reducing failure rates of robotic sys-
tems though inferred invariants monitoring. In 2013
IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan, November 3-7,
2013, pages 1899–1906, 2013.

[13] Hengle Jiang, Sebastian G. Elbaum, and Carrick
Detweiler. Inferring and monitoring invariants in
robotic systems. Auton. Robots, 41(4):1027–1046,
2017.

[14] C. A. Klein and C. Huang. Review of pseudoinverse
control for use with kinematically redundant manip-
ulators. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(2):245–250, March 1983.

[15] M. Kusano, A. Chattopadhyay, and C. Wang. Dy-
namic generation of likely invariants for multi-
threaded programs. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering,
volume 1, pages 835–846, 2015.

[16] Tien-Duy B. Le and David Lo. Deep specification
mining. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2018, page 106–117, New York, NY,
USA, 2018. Association for Computing Machinery.

14

http://wiki.ros.org/sensor_msgs
http://wiki.ros.org/sensor_msgs

[17] ThanhVu Nguyen, Matthew B. Dwyer, and Willem
Visser. Symlnfer: Inferring program invariants using
symbolic states. 2017 32nd IEEE /ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 804–814, 2017.

[18] Thanhvu Nguyen, Deepak Kapur, Westley Weimer,
and Stephanie Forrest. Dig: A dynamic invari-
ant generator for polynomial and array invariants.
ACM Trans. Softw. Eng. Methodol., 23(4):30:1–
30:30, September 2014.

[19] C. W. Wampler. Manipulator inverse kinematic solu-
tions based on vector formulations and damped least-
squares methods. IEEE Transactions on Systems,
Man, and Cybernetics, 16(1):93–101, Jan 1986.

[20] Jinlin Yang, David Evans, Deepali Bhardwaj, Thiru-
malesh Bhat, and Manuvir Das. Perracotta: Mining
temporal api rules from imperfect traces. In Proceed-
ings of the 28th International Conference on Soft-
ware Engineering, ICSE ’06, pages 282–291, 2006.

15

	Introduction
	Motivation
	Problem Space

	Related Work
	Approach
	Invariant Patterns
	Expanded Inference Techniques
	Optimization Techniques

	Study
	yangliu28/swarm_robot_ros_simhttps://github.com/yangliu28/swarm_robot_ros_sim
	raoshank/Multi-Robot-Decentralized-Graph-Explorationhttps://github.com/raoshashank/Multi-Robot-Decentralized-Graph-Exploration
	lucascoelhof/voronoi_hsihttps://github.com/lucascoelhof/voronoi_hsi
	Cost to Infer

	Conclusions
	Future Work

	Invariant Patterns
	Focus Readings
	Background Readings

