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Abstract

Autonomous Driving Systems (ADSs) are becoming more advanced and ubiquitous, enabled by in-
creasingly sophisticated deep neural networks (DNNs). As ADSs’ autonomy levels rise, so does the cost
and complexity of their failures. Often, these failures arise when these DNNs are less robust than ex-
pected. In studying these systems, I found that these failures can occur due to unexplored inputs from
the long tail of driving scenarios or when the system evolution affects the input distribution. These
circumstances are common but challenging to accommodate because their effects are difficult to antic-
ipate and solutions may not generalize, leaving us with a brittle system. I postulate that the impact
of input distribution shifts on the robustness of a DNN-dependent system can be manipulated through
the careful design and encoding of transformations that account for their effects on DNN predictions,
analysis of their compounding effects on system state, and naturalness. To overcome these threats to
robustness, I have developed two types of techniques. First, I have engineered techniques to mitigate
robustness-related failures when the cause is known but the effect on the DNN prediction is not, specifi-
cally for the common scenario when a sensor component used to collect the training dataset for a DNN
onboard an ADS is swapped out. Second, I have extended adversarial test generation techniques, which
aim to produce input perturbations that cause a DNN to compute incorrect outputs and estimate DNN
robustness, to consider how the effect of perturbations are attenuated by other ADS subsystems and
are less effective as ADS state evolves. However, these perturbations are often not in distribution and
appear unnatural, making them easy to spot and dismantle or less likely to resemble deployment con-
ditions. I will investigate two approaches to increase naturalness while retaining perturbation strength:
constraining perturbation generation techniques to only reproduce features seen during DNN training,
and manipulating unconstrained perturbations with diffusion models to appear naturalistic to humans.
Overall, the family of proposed techniques takes a significant step to improving ADS robustness.

1 Introduction

Autonomous driving systems (ADS) are increasingly normalized in our day-to-day lives. This trend towards
automation is projected to continue as its advantages, reliability, and cost grow [52]. ADS often rely on deep
neural networks (DNNs) to automate tasks that humans could otherwise reliably perform. Producing these
DNNs is expensive, requiring massive amounts of data, labelling, training, and iterations of refinement [76,
86, 96]. Despite their critical role in autonomy and cost-intensive production, DNNs are often brittle to
shifts in their input distribution, even ones imperceptible to humans [15]. In previously studying these
systems [83] I have shown that even the DNNs of sophisticated, road-tested commercial driver assistance
systems are susceptible to perturbations that force violations of properties integral to system safety.

More generally, these DNNs suffer from a lack of robustness to commonly occurring shifts to the DNN’s
input distribution. Albarghouthi defines robustness as a desirable DNN property where ‘small perturbations
to inputs should not result in changes to the output of the neural network’. Clearly, ‘small’ is context-
dependent, and a slightly generalized version of that definition accounts for cases where small changes in the
input may cause changes in the output [5]. I examine two such changes.

One type of change that threatens system robustness stems from the presence of unexpected objects in the
deployment environment. This can happen accidentally by inputs from the current deployment environment
drifting out of distribution with the intended deployment context [9], the occurrence of a rare event that the
DNN’s training set did not capture [18, 41, 46], or an intentional reconfiguration of the environment [32].
These unexpected features can also be artificially constructed, easily integrated into the environment [33, 44]
and can fool a variety of sensors [14, 54]. Artificially constructed adversarial examples for autonomous mobile
robots often directly reuse problem setups from the machine learning community, with existing techniques
failing to account for the unique considerations of these systems, such as system state, which has a cascading
effect on the DNN input distribution shift as the adversarial example takes effect and on the spatiotemporal
dependency of inputs and outputs. While these artificially constructed adversarial features can mislead
systems with varying degrees of effectiveness, they are also limited in that they do not resemble features for
which the DNN was trained, they are not optimized for the surrounding deployment environment (resulting
in mixed success or success limited to a single environment), and they are visually identifiable by humans.

Another type of change originates in changes to the system itself, such as sensor hardware migration.
Sensor hardware migration is where one sensor is replaced by another, for example to reduce cost or increase
sensing quality [85]. Sensor hardware migrations occur frequently in practice (see Table 1). These migra-
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tions are problematic because they may render data different from that employed in the ADS development,
potentially affecting the system performance and mitigating their downstream effects on DNN predictions
can be costly [49]. Although these migrations are extremely common and the problematic changes to the
sensor readings between hardware is well-documented, relatively little work has emerged to mitigate these
changes in ADS or other safety-critical systems. This leaves a key piece of the ADS pipeline exposed to
failures with high cost to mitigate this common occurrence during development.

I postulate that the impact of input distribution shifts on the robustness of a DNN-
dependent system can be manipulated through the careful design and encoding of trans-
formations that account for their effects on DNN predictions, analysis of their compounding
effects on system state, and naturalness. Section 1.1 provides an illustrative example of the types of
challenges I plan to tackle. Section 1.2 outlines completed and proposed work.

(a) Motivating example of an ADS

(b) Shallow Depth (c) Resolution Increase

(d) Resolution Decrease (e) Fisheye Lens

(f) Image transformations that result from camera migra-
tions and the corresponding change in steering prediction.
(red arrow is the original prediction, blue arrow is the new).

Figure 1: Motivating examples for changes in ADS.

1.1 Motivation

Even the navigation DNNs of sophisticated commercial ADS have been proven to be insufficiently robust.
I conducted the first falsification study of a real-world commercial ADS OpenPilot [83] and its end-to-end
DNN supercombo. supercombo takes multiple inputs including two images and outputs a (1, 6472) vector
predicting lane lines, lead cars, ego trajectory, and prediction confidence, among other things. In order to
successfully drive an OpenPilot system, supercombo output must be robust to small changes in input, e.g.
small changes to an input image should not change lane line predictions by more than 1

4 standard lane width
(see Figure 2). With multiple high-dimensional inputs and outputs, a recurrent architecture, and over 100
hidden layers, supercombo itself is highly complex which can make it difficult to test. Falsification can only
provide a measure of local robustness to pixel-level input manipulation, and the complexity of supercombo,
the OpenPilot system, and ever-changing driving environments can present a myriad of threats to system
robustness that are difficult to uncover through state-of-the-art falsification techniques.

In spite of the falsification study findings, pixel-level adversarial manipulation is not as powerful when
considering the full scope of real-world ADS development and deployment. These techniques are limited
in that: (1) pixel-level perturbations found during falsification often cannot be applied under deployment
as they assume full control over the sensor reading; (2) they do not model realistic system changes that
threaten robustness such as sensor hardware migration; (3) they lack knowledge of their compounding effect
on ADS state and so these local robustness failures may not translate to system-level failures; and (4) they
lack naturalness in that they do not mimic the circumstances of real-world ADS failures.

To reduce the assumption of full control, existing adversarial example generation techniques have taken
a variety of approaches. Adversarial example generation is a testing technique that helps to determine the
robustness of a DNN-dependent system, especially perception-dependent systems due to their exceptionally
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Systems Camera hardware migration Feature change
Level 5 / Woven Planet 100m to 60m stereo depth accuracy[66] Depth of field
Waymo Pinhole camera to fisheye lens camera [87] Fisheye
Waymo Rolling shutter to global shutter [87] Removed artifacting
Argo v1.0 to 2.0 (ring) (1920 x 1200) to (2048 x 1550) resol. [20, 88] Resolution increase
Argo v1.0 to 2.0 (front stereo) (2056 x 2464) to (2048 x 1550) resol. [20, 88] Resolution decrease
Argo v1.0 to 2.0 Landscape to portrait orientation [20, 88] Orientation
Tesla AutoPilot 2 to 2.5/3.0 RCCC filter to RCCB.8 filter [77] Filter color shift
Tesla AutoPilot 1.0 to 2.0 Black and white to RGB color [77] Dimensionality inc.

Table 1: Common hardware migrations and resulting image transformations. See Figure 1 for image examples
captured through a subset of these cameras.

large and complex input space. More recent works have adjusted their threat model to only manipulate
a limited set of features [44, 79]. However, these techniques do not account for changes in state once the
perturbation takes effect during generation or only evaluate on single-image classification tasks.

(a) Original Image (b) Counterexample

(c) Change in supercombo lane line predictions
between original image and counterexample.

Figure 2: Original comma.ai dataset im-
age and counterexample with low-level
noise within ϵ=10 and corresponding
output from supercombo.

To exemplify robustness to system changes, Table 1 lists real-
world commercial ADSs similar to the Figure 1 ADS, the cam-
era hardware migration they underwent between versions, and
the resulting feature change in the camera sensor readings. Fig-
ures 1b-e show camera sensors with varying intrinsic parameters
corresponding to Table 1 rows 1, 2, 5, and 4 respectively and the
resulting steering DNN prediction change. The computer vision
community has proposed limited solutions to mitigate some of
these feature changes individually. Image transformations such
as depth of field, camera motion, or lossy artifacting such as lens
flare each require a unique mitigation technique [2, 60, 69, 74].
Moreover, they are evaluated on reconstruction error (a pixel-
wise metric) [7], or inception score based on a learned discrimina-
tor [36]. These metrics are problematic for ADS robustness due
to the safety critical function of the downstream DNN. Because
camera hardware changes persist from timestep to timestep, there
is a high probability that the resulting prediction errors will result
in a crash.

To incorporate knowledge of state, existing techniques have
taken preliminary steps (see Section 2.2). However, adversarial
testing does not consider system state during attack optimization.
This results in attacks that are physically problematic [12, 28] or
self-defeating attacks that push the ADS into a region of the envi-
ronment for which the attack was not optimized [44, 98], leading
to an inconsistent input distribution later in the test. This incon-
sistent input distribution between generation and testing results
in reduced efficacy of the adversarial attack and difficulty gauging
that efficacy from metrics produced during the generation phase.

And lastly, these perturbations do not appear natural, in that they are dissimilar from the training set
of the DNN, the surrounding environment, and the distribution of natural images [37, 97]. Real-world ADS
failures are often caused by higher-level feature changes, such as roadside signs, turning on an emergency
vehicle’s flashing lights [41], or unusual lighting conditions [9]. State-of-the-art work on natural perturbations
still assumes control over large areas of the image, has diverging definitions and metrics for what qualifies
as a natural perturbation, and do not consider systems with spatiotemporal aspects. As a result, we need a
strategic way to identify and test a range of possible features of DNN inputs that violate expected system
behavior and conform to the possible deployment environments of the system and therefore also conform to
the possible input distribution of the DNN.
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Section Technique
Input Distribution

Shift Type
Transformation

Mechanism
1 OpenPilot DNN safety property falsification [83] adversarial –

3.2
Transformations for supporting camera sensor

hardware migration [85]
sensor migration autoencoder

3.3 State-adaptive in-situ adversarial perturbations [84] adversarial state-adaptive optimization
3.4 Natural adversarial perturbations (features, disguised) adversarial distribution density, stable diffusion

Table 2: An overview of the completed work, proposed work, and which challenge it tackles. Rows 1-3 are
completed work and Row 4 is proposed work.

1.2 Contributions

Table 2 provides an overview of the novel contributions described in this proposal, related sections and how
they address each of these two axes. Columns 1 and 2 list the techniques described in this proposal and their
sections. Column 3 lists the origin of the distribution shift that occurs to the DNN inputs during the ADS
development lifecycle and threatens system robustness. Column 4 describes the transformation mechanism
each technique uses or will use to manipulate the distribution shift.

This dissertation proposal includes two completed pieces from my body of work: (1) the mitigation of
feature deformations in sensor readings to preserve DNN predictions in the presence of sensor hardware
migrations; and (2) the introduction of state-adaptive adversarial perturbations that increase the strength
of in-situ adversarial patch attacks and the versatility of the maneuvers they can induce. Then, I propose
an exploration of and extensions to techniques for natural adversarial patch generation. The expected
contributions of this dissertation are:

• A study of a real-world system that shows input distribution related failures with system-level conse-
quences are common and reproducible [83];

• A technique to provide a low-cost, effective, and highly generalizable remedy to sensor hardware mi-
gration that is hardware independent and an implementation and comparison against state-of-the-art
techniques to mitigate the impact of sensor hardware migrations, specifically camera sensors in com-
mercial ADS [85];

• An adversarial testing framework for autonomous vehicles that generates perturbations while account-
ing for vehicle state changes and capabilities and makes subtle changes viable in real world contexts
that can make previously safe environments unsafe and cause system-level failures [84];

• A proposed extension to the previous contribution that allows for natural perturbations within the
training distribution of the DNN and natural perturbations in terms of noticeability to humans;

• Open-source repositories of results and tools for all the above techniques: https://missmeriel.

github.io/artifacts/; and

• Broader impact through mentorship of 8 undergrads in my project that iteratively built up an end-to-
end robotics and deep learning pipeline for better reproducibility and comparison of research techniques.
https://github.com/MissMeriel/ROSbot_data_collection/tree/rosbotXL

2 Background

This section provides descriptions of key areas of related work, namely input transformations to support
Section 3.2, adversarial testing to support Section 3.3, and naturalness to support Section 3.4.

2.1 On Encoding and Transforming Input Distributions

This section covers previous work on how to encode image distributions and how to engineer transformations
from one distribution to another. These previous works often employ learned components to encode these
distributions or learn transformations and use a variety of architectures.
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Encoding the features of image distributions is a wide field of study [13, 30, 42]. An encoder [59, 72] is
a type of neural network that learns efficient embeddings of unlabeled data. The set of embeddings is often
referred to as a dictionary. An input image is passed through the encoder to generate a dictionary embedding,
then the decoder uses the embedding to generate the reconstruction. My completed and proposed techniques
primarily use variational auto-encoders (VAEs) [7, 47] which use an encoder, dictionary, and a decoder to
reconstruct the original data using its lower-dimensional embedding. VAEs can suffer from gradient collapse
and have difficulty with non-categorical data. Vector-quantized VAEs (VQ-VAEs) [82] were designed to
overcome such deficiencies by using an autoregressive (learned rather than static) prior and discretizing the
embedding dictionary, which is a more natural representation modality for languages, image features, and
planning. VQVAEs are well-suited to encode images correlated with a continuous output distribution from
the original DNN. A discrete dictionary also circumvents “posterior collapse” where the decoder overpowers
the latent encoding and leads to poor reconstructions. Encoders encompass many different architectures
beyond VAEs and VQVAEs, but the exploration of what these encoders can learn has been limited to
the pixel-level image reconstruction. State-of-the-art encoders do not try to encode other (state-related)
information like the steering angle associated with images as a way to guide reconstruction or group the latent
space of embeddings. See Section 2.3 for other generative architectures that can encode image distributions.

Using custom image transformations to approximate a feature space mapping has been explored in the
computer vision community [2, 7, 36, 69, 74]. However, producing mappings between sensor changes is a
relatively new problem for engineers of cyber-physical systems [16, 17]. Current research [43] shows that
engineers can introduce transformations to “clean” images, but cannot always translate between them. For
example, novel view synthesis [19] can support the transformation between images due to differences in
camera extrinsics by interpolating between perspectives. However feature deformations due to changes in
camera intrinsics prevent this transformation. Moreover, the computer vision community tends to evaluate
these transformations on image similarity metrics rather than their prediction fidelity by a downstream image
processing neural network [7, 36]. This setup, sometimes referred to as network chaining [67, 92], appears in
commercial ADS [65] and is a critical success metric for image transformations used by ADS.

2.2 On Adversarial Testing

This section covers common deep learning adversarial testing strategies for images, as well as software-based
strategies for testing autonomous robotic systems like ADS. These testing strategies vary from low-level
adjustments to individual pixels, to changing the appearance of features, to reconfiguring the entire driving
environment including the road surface.

The machine learning community has pioneered specialized mechanisms to judge DNN robustness through
the generation of adversarial inputs [4, 31]. Many of these techniques have been extended to apply to the
ADS context. The seminal work DeepXplore [64] generates adversarial perturbations using gradient ascent
that vary a minimal number of pixels in single images and diffs the prediction accuracy of an autonomous
vehicle steering model. These pixel-level perturbations can give a measure of local robustness around the
original images used to generate a perturbation, but are unlikely to occur in practice because they assume
control over the entire image space.

Other techniques apply adversarial perturbations at the feature level of images, a higher level abstraction
than pixel-wise manipulation [57, 78, 94, 101]. These techniques generate perturbations of varying sophis-
tication, mimicking effects like weather conditions or camera distortion, while assessing their impact across
various trained models and architectures. However, these techniques still generate and test perturbations
on static images or even single images, and as a result do consider system state. As stated previously, the
effectiveness of DNN robustness testing does not necessarily translate to system failures. DNN faults may
not cause a system failure (i.e., a DNN steering error is bounded by the system controller), and behaviors
considered benign at the DNN level may become problematic for the system (i.e., an accumulation of small
steering errors) [34].

Although classical adversarial attacks for DNNs do not measure the effect on the surrounding system,
ADS software testing approaches often employ search-based techniques that test the system as a whole in
a state-aware manner, focusing on interactions of features or properties of the driving environment. Many
of these efforts target the whole system but use insights about high-level component mechanisms to better
generate inputs that might cause behaviors that violate system safety [10, 68, 80, 81]. Others focus on
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searching the space of environment features to create new adversarial environments for system tests [29, 90].
These works show that setting the system in the right state and environment matters and that checking the
system state at the test completion can be helpful to guide the generation of future tests. However, they
are using search-based exploration for a near-infinite configuration space – the space of inputs to the ADS.
Furthermore, the search process treats the ADS as a black box, is open-loop and does not adapt to the
evolving system state, and gives no indication that the generated test will provoke a system failure until it
is actually run, only that the newly generated test is similar in some properties to previous failing tests.

Other approaches focus on feature-level perturbations, analyzing the DNN like other adversarial mech-
anisms but augmented by system state [44, 61, 62, 98]. These approaches all use a grey-box model of a
regression network-dependent ADS to change the appearance of a billboard within view of the ADS per-
ception sensor object in the driving environment in order to influence system behavior. These works took
the first steps in generating perturbations that account for the system state. Yet, they are still open-loop
in that their perturbation generation processes do not update for the impact that the perturbation may
have on the system state, which may render the perturbation ineffective over time as the vehicle trajectory
diverges from the one for which generation was optimized. Patch attacks designed to defeat classification
and detection networks usually use a similar state-aware open-loop approach to generation but attack the
physical objects directly, such as stop signs or lane markers [12, 28], which are highly regulated objects in the
driving environment and illegal to deface. Although these state-aware techniques show greater promise than
white-box feature-level perturbations on single images or black-box search-based software testing techniques,
they are still open-loop and can be self-defeating as the perturbation takes effect.

2.3 On Naturalness

This section covers previous work on definitions of image naturalness, why natural adversarial examples are
worthwhile to generate, commonly used strategies to generate them, and the various metrics with which
naturalness is judged.

Zhao et al. [97] determine classic pixelwise adversarial examples [31, 50, 75] to be unnatural in that they
are statistically unlikely to occur under deployment, and thus they do not expose useful “blind spots” in
learned components and do not offer helpful insights into the fundamental decision behavior inside the black-
box learned component. In other words, they do not help answer the question, “why is the model’s inference
different for the adversarial example versus the unperturbed input?” Zhao et al. apply their technique to
very small (100 × 100 or less) images and textual natural language examples and search for adversaries in
a dense and continuous representation of the training data, a common strategy [24, 25] but one that can
prove difficult for large and complex image distributions [73]. Note that similar work [3, 40] defines natural
adversarial examples as semantic adversaries that manipulate image properties like color shift or artifacting
derived from sensing hardware. This proposal uses Zhao et al.’s definition of naturalness.

Natural adversarial patches are an emerging type of attack. For example, MVPatch [100] creates “vivid
and aggressive” adversarial patches for single-image person detection tasks. These patches are generated
by obtaining the gradient for a patch using several losses for backpropagation, including object detection
confidence and a pixelwise Minkowski distance to constrain naturalness. The patches are intended to be
natural in that they appear on their own to be standalone natural images. However, they are not stealthy
in relation to their surroundings [27]. MVPatch introduces the naturalness score which relies on cosine
similarity score of the original image and the adversarial patch under several different generalization-related
image transformations. However, the changes to these features must be significant enough to affect ADS
behavior. While there are results on similar techniques, which involve human-imperceptible changes to
roadside billboards, the studies were limited and no artifacts were available [44].

Diffusion models [38] have become popular for their ability to sample data distributions with high fidelity
and diversity. Detecting synthetic images generated by stable diffusion models has shown to be less prone
to producing distinctive patterns in their generated images than GANs and can be difficult to distinguish
from real images [22, 70]. AdvDiffuser [21] harnesses the power of diffusion model to perturb classification
examples by denoising between an original image and an image that has been attacked using projected
gradient descent (PGD), iteratively removing unnatural components from the injected noise. AdvDiffuser
restricts distance from the original image by restricting perturbations to regions that are not the salient
object and using image comparison metrics [26, 39, 95] to compare to the unperturbed image. Although this
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technique assumes control over all aspects of the image that are not the salient object, the technique shows
promise on classification tasks and could be extended to the ADS context.

Naturalness metrics are a known difficult problem, and the gold standard of naturalness is considered hu-
man adjudication [27, 100]. In a seminal work on naturalness, Hendrycks et al. [37] select natural adversarial
examples that adhere to the Zhao definition by manually culling through several natural image classification
datasets. While this approach has been replicated [63], the process is expensive and time-consuming and
not feasible for all models, as classification is a clearer task than “correct” driving or other regression tasks
with fuzzy comparison.

3 Research Progress

In this section I will provide a roadmap of my completed and pending work, starting with a general problem
definition and following with each of my research threads. For each research thread, I refine the problem
definition, summarize the technical approach, and highlight the major empirical findings.

3.1 Common Problem Definition

An ADS S is equipped with sensor c, a navigation DNN N , and a system state space A. At each timestep
t, c produces sensor reading xt, which is consumed by N to produce control signal ψ̂t. That control signal
ψ̂t is then passed to S and attenuated by S’s current state at ∈ A to produce the signal it actuates, ψt.
x is sampled from distribution XIR ⊂ X, the set of all realistic inputs to N and a subset of all possible
values the sensor reading can take. XIR is parameterized by c intrinsics and extrinsics, as well as the set of
environments E = {e1, e2, ...en} that S is designed to navigate.

Over the course of the system lifecycle, XIR can shift due to intrinsic and extrinsic changes to c and
changes to E . We characterize that shift through function T (XIR) = X ′

IR that produces a new inconsistent
input distribution X ′

IR such that N (x ∈ XIR) ̸= N (x′ ∈ X ′
IR). This shift and resulting mispredictions

N (T (XIR)) ̸= N (XIR) can lead S to inhabit states outside of the safe operation of the system, including
failure states. The problem I address in this dissertation is how to approximate or invert T such that the
system can reach desired states.

Refer to the Glossary (Appendix A) for a shortlist of terms and symbols introduced here.

3.2 Learning Transformations to Mitigate ADS Sensor Migration

3.2.1 Problem Definition

Given an ADS that relies on an N that is reliable but costly to produce, a sensor hardware migration from
c to a new sensor c′ that shifts N ’s input distribution from Xc to Xc′ , the problem is to reduce the cost to
produce N by finding a transformation that can map an xc′ to xc to produce a reconstruction image x̂ ∈ X̂
such that:
(1) Tc′:c(Xc′) = X̂ ≈ Xc : the transformation of the input distribution from the new sensor must consistently
approximate the input distribution from the original sensor c.
(2) argminTc′:c

N (Tc′:c(Xc′) = X̂)−N (Xc): the error between the prediction produced by N on the original
sensor reading and N on the transformed new sensor reading is minimized.

Note this setup could consider at as an supplement of the inputs to N or the type of transformation Tc′:c.

3.2.2 Technical Approach

To address this problem, previous techniques based on image reconstruction do not demonstrate that they
can be applied to safety critical systems, and previous techniques based on retraining do not show that they
are resource-efficient for ADS tasks (see Section 2.1). To address this failing, I developed a technique called
PreFixer. PreFixer can systematically learn transformations Tc′:c to mitigate Tc:c′ for many types of sensor
hardware migrations during the ADS development lifecycle. For example, Tc′c: can reconstruct any of the
sensor readings Figure 1c-e to approximate Figure 1a in a way that preserves the ψ̂ of Figure 1a.
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Figure 3: PreFixer overview of technique

My approach relies on two key components to
automatically compute the transformation Tc′:c: a
flexible variable encoder architecture and the ability
to capture a small dataset with both sensors running
concurrently. These components play a role in the
collection, configuration, training, and deployment
stages of the development lifecycle.

Figure 3 provides an overview of the PreFixer
technique applied to the Figure 1 ADS. Step 1 is the
collection of a collocated dataset using both sensors
c and c′ as well as N ’s predictions on c which are
also being used to drive S through a subset of en-
vironments in E . Step 2 is the configuration of the
encoder that will perform the transformations. Step
3 is the training of the encoder using the collocated
dataset and a loss function that utilizes predictions
from the navigation network. This loss function uses
the reconstruction loss of the encoder’s reconstruc-
tion compared to the original xc ∈ Xc using xc′ , an
accuracy loss of N (xc) and the N (x̂), and an em-
bedding loss to guide the embedding dictionary vec-
tors. The training portion of Figure 3 shows training
for one input. The c′ reading xc′ is passed to our
augmented encoder, a VQVAE [82]. The resulting
reconstruction x̂ ∈ Xc is then used to calculate the
terms of the loss function:

loss = L1(ψx̂ − ψx) + L2(xc − x̂) + embedding loss (1)

Step 4 is deployment where the original hardware c is replaced with the new sensor hardware c′ and the
encoder-decoder module is integrated into the system software as a preprocessing step to N . Under deploy-
ment, the states inhabited by S a⃗0,n ∈ A using the original software configuration are compared to those
inhabited while using PreFixer and the new sensor to determine the efficacy of the learned Tc′:c.

I developed several instantiations of the approach to support a diverse range of camera hardware mi-
grations commonly occurring in practice, to be resource-efficient in that it is easier, faster, and cheaper to
apply than existing techniques such as designing custom image transformations or retraining a DNN, and
which provides a set of configuration principles that require minimal setup, parameter tweaking, and domain
knowledge. To support a range of camera migrations, I tailor a VQVAE encoder to each transformation to
avoid gradient collapse and leverage the output distribution of the original DNN. I augment the encoder
architecture to be flexible enough to support variations in input image size and feature deformation, en-
suring that all images can be encoded to the same low-dimensional space and reducing parameter tweaking
once a sufficient embedding dimension has been found. To ensure resource efficiency, I use an augmented
VQVAE training loss function to optimize PreFixer for the reconstruction of features important to N , im-
proving prediction accuracy on x̂. This practice is rooted in recent results suggesting that a well-trained
image processing model will help with the training of another [6, 67, 91]. Finally, to minimize investment in
setup, parameter exploration, or domain knowledge, the VQVAE offers a single automated mechanism for
unsupervised learning to automate the mapping between feature spaces of the new and old sensors, trans-
formation regardless of type, eliminating the need for developer time to craft bespoke transformations or
domain knowledge beyond the dimensions of the images.

As mentioned in Section 3.2.1, PreFixer can consider state as well but in this implementation it does not
to better determine the difficulty of image transformations alone.

3.2.3 Results

My study on the PreFixer technique aims to answer the following research questions:

8



Figure 4: Effectiveness of PreFixer and baseline techniques with varying dataset sizes from 5K to 50K
samples. My results show, on average, PreFixer is more successful than all other techniques, with all
transformations achieving between 87.2 and 93.0m travelled. Moreover, PreFixer can learn an effective
transformation with 1

3 or less data than it takes to retrain a network.

RQ1) How effective is PreFixer compared to other techniques in supporting common camera migrations? To
answer this question, I explore 4 image transformations related to camera migrations observed in real-world
systems. I then test PreFixer on 10 validation road segments not seen in training.

RQ2) How much data does PreFixer need to successfully learn each image transformation? To answer this
question, I compare performance across 4 dataset sizes for all 4 image transformations.

My study uses the BeamNG high-fidelity driving simulator [8]. For the autonomous vehicle under test,
I equip the prepackaged “hopper” vehicle with an onboard camera at the top edge of the windshield. The
camera has a 50◦ field of view angled upwards 5◦ relative to the vehicle pitch and collects images at 15 Hz to
mimic established self-driving setups [1]. For vehicle control, I re-implemented the DAVE2 architecture [11],
which consumes camera images to steer a vehicle. I trained DAVE2 with 145,521 images collected over
multiple prebuilt BeamNG driving environments. The trained network final loss was 0.012 MSE between
predicted and ground truth steering angles. A PID regulates throttle. This system is able to traverse all
road segments in this study with the original camera configuration. I test all techniques in simulation on 10
unseen 100-meter road segments and performance was measured by average distance travelled.

Table 1 examples from rows 1, 2, 4 and 5 motivate the transformations I chose for this study. The fisheye
transformation increases the field of view from 50◦ to 75◦. The depth of field transformation decreases the
depth in focus from 1000m to 100m. Depth and fisheye maintain the image size of 108×192. The resolution
increase transformation increases original image dimensions from 108× 192 pixels to 270× 480 pixels. The
resolution decrease transformation adjusts the original dimensions to 54× 96 pixels.

As shown in Figure 4, I compare PreFixer against three baselines. First, Bespoke Transformation Only
(BTO) employs a custom and domain-specific inverse transformation that maps the new sensor feature space
back to the old sensor feature space (Tc′:c) before prediction by N . In practice, Tc′:c is designed and tuned
over time by the developer using domain knowledge and validation results. Second, Transform and Retrain
(TR) retrains the DAVE2 model architecture using a transformed version of the dataset where existing
images are mapped to the feature space of the new sensor (Tc:c′). Tc:c′ is developed using a similar pipeline
to BTO, but the transformation is inversed. Lastly, Fine-tuning (FT) uses warmstarting by keeping the
weights of the trained DAVE2 model and fine-tuning those weights using new sensor data [6, 48]. Ash et
al. mention this practice consistently hurts generalization, while deceptively having little effect on training
accuracy. Completely retraining a DNN on a new dataset is costly [35, 45, 51, 53], so warm-starting and
fine-tuning are viable options for some applications. For transformations involving changes to input size, the
model’s last convolutional layer was adjusted.

My results show that PreFixer can learn an effective transformation with 1
3 or less data than it takes to

retrain a network. Given a 50K dataset, PreFixer outperforms all baselines by a margin of 3m travelled or
more. PreFixer also outperforms TR and FT for all transformations when comparing identical dataset sizes.
Figure 4 shows that, on average, PreFixer is more successful than all other techniques, with all transforma-
tions achieving between 87.2 and 93.0m travelled. Even when compared with the best-performing alternative
technique, BTO, PreFixer can equal or surpass the performance for three of the four transformations with
just a 5K dataset. My technique can improve upon BTO for 3 out of 4 common image transformations using
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only a 5K dataset. Moreover, PreFixer is more affordable than retraining a DAVE2 network, even without
considering the cost of collecting a new dataset for the new DAVE2.

3.3 DeepManeuver

3.3.1 Problem Definition

This work extends the common problem definition to include an attack surface O in e ∈ E visible to the
vehicle’s perception subsystem, as well as a target maneuver M defined by a sequence of states m⃗0,n ∈ A
inhabitable by S from timesteps 0 to n. m⃗0,n characterizes a system-level maneuver that is defined through
spatio-temporal relationships between vehicle and environment, such as turning, running off the road, or
crashing into an obstacle. Over the timesteps 0 to n, S will inhabit a sequence of states a⃗0,n under the
control of N as it navigates e within view of O. S’s state at at timestep t includes S’s pose, the image
it perceives through its camera xc, and its actuated steering angle ψt. O is captured in the images xc0,n
embedded in states a⃗0,n. The problem is to find a function Torig:pert(xc0,n ∈ a⃗0,n) by manipulating the
appearance of O such that argminOm⃗0,n − a⃗0,n.

3.3.2 Technical Approach

My approach DeepManeuver [84] attempts to address a key failing in the state of the art for adversarial
attacks on ADS viable in a real-world deployment context [12, 44, 61, 99], namely that they do not optimize
for the compounding effects of the perturbation on vehicle state. These in-situ patch attacks take a physical
object in the deployment environment and apply some function Torig:pert to perturb its appearance in an
attempt to induce a system-level failure. In this work I present a state-adaptive approach that interleaves
perturbation generation and simulation, jointly updating the at of S and target statemt that the perturbation
seeks to induce in S. The Torig:pert function, which in my study is applied to physical roadside billboards,
is refined over each timestep as the perturbation of the previous timestep takes effect and weights the
expected perturbation error according to size of the perturbation in the sensor reading image, which is a
function of distance from the vehicle to the billboard O. This allows for the prioritization of high-strength
perturbations for more effective timesteps, and allows the capture of the full input distribution Xa0,n for
which the perturbation generation function Torig:pert must be optimized in order to have a measurable effect
on a0,n when the patch is deployed.

Figure 5a provides a conceptual overview of DeepManeuver applied to the motivating example in Sec-
tion 1.1. The main components DeepManeuver and the Simulator iteratively update a perturbation pert
alongside the vehicle system state, enabling a state-adaptive approach. DeepManeuver takes four sets of
inputs: the initial conditions for the simulation and the vehicle, the perturbation parameters such as the
location and size of the perturbation surface, the target maneuver, and the stopping conditions for the
perturbation generation loop. As S navigates e in view of O, the State Aggregator aggregates at at each
timestep and passes it to the Perturbation Generator. The Perturbation Generator uses this state sequence
(specifically xt and ψ̂t), N , and targetψ,t to optimize pert over the updated state sequence. This component
of the technique determines target steering value targetψ,t for S to attempt to actuate using m⃗0,n = M
at time t and at. Note that M may be specified in terms of any state variables but targetψ,t can only be
specified in terms of the actuation controlled by N . The Perturbation Generator jointly optimizes two ob-
jective functions: one for maximizing the likelihood of satisfying M in the next step, and one for minimizing
the effect of perturbation optimization on the already-traversed trajectory. After perturbation optimization,
the Perturbation Injector injects the updated pert into e through O. The simulator then steps forward
one timestep; S perceives the updated Opert,t and advances in its trajectory, with N (imgOpert,t

) affecting
the new at+1. The State Aggregator then captures at+1 and adds the new xt+1 and ψt into the sequences
utilized by the optimization process to preserve previous effects of Opert,t in future optimizations. At each
loop iteration, the Completion Monitor checks whether stopping conditions are met, such as driving off the
road, crashing, or passing Opert,t so it is no longer in view. Once a stopping condition has been met, the
final perturbation is ready for deployment to the test wrapper.

The Perturbation Generator in Figure 5b performs the critical operations of DeepManeuver to optimize
the perturbation at each timestep. Once an image sequence is received, the Generalizer uses the noise variance
parameter to create a function to produce variants of that sequence, increasing the adversarial strength [27] of
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the perturbation.1 The Optimizer then consumes N , img seq and control seq, and targetψ,t, and generates
Torig:pert using projected gradient descent [15], accounting for two properties. First, the perturbation must
maximize the vehicle state change toward the current m. Second, perturbation effects over a0,t must be
consistent over time and space, as the current at depends on the effects of early perturbations. These
two properties are enforced jointly at each iteration of perturbation generation by finding a Torig:pert that
minimizes the loss functions L1 and L2 derived from two error terms:

argmin
Torig:pert

(L1(N (imgn + Torig:pert), targetψ,n) +

n−1∑
t=0

L2(N (imgt + Torig:pert), ψt)) (2)

(a) Conceptual Overview of DeepManeuver.

(b) DeepManeuver’s Perturbation Generator (ex-
panded view of blue box in Figure 5a).

Figure 5: Overview of DeepManeuver approach

Typically, existing techniques [44, 62, 98] consist of
two phases: a collection phase to gather a set of inputs
to the DNN, and a generation phase to perturb these in-
puts. DeepManeuver instead interleaves collection and
generation phases by embedding a simulator into the ad-
versarial generation cycle, ensuring that effects of the per-
turbation are reflected in future states and perturbation
updates are tailored to trajectory changes. As the vehi-
cle travels a trajectory, DeepManeuver is able to generate
candidate perturbations to: (1) account for changes in
the vehicle’s state that may affect how the perturbation
is perceived (i.e., the position and heading of the vehicle
in the road), (2) retain the effect of the perturbation on
previous states so that the current state is still valid, and
(3) result in target maneuvers that require complex evo-
lution of state and disrupt the vehicle trajectory in a pre-
determined, specifiable way. In summary, DeepManeuver
is the first state-adaptive adversarial testing approach for
autonomous vehicles.

3.3.3 Results

The DeepManeuver study aims to answer the following
research questions:

RQ1) How effective is DeepManeuver at generating per-
turbations that cause an autonomous vehicle to leave the
road? To answer this I compare DeepManeuver to two
versions of a state-of-the-art technique on 6 scenarios
across 3 road topologies, and I explore the effect of some
key parameters on the effectiveness of our approach.

RQ2) How effective is DeepManeuver at generating per-
turbations that cause an autonomous vehicle to fulfill ma-
neuvers involving multiple target states? To answer this
question, I explore the ability of DeepManeuver to achieve
three multi-target maneuvers: hit a target, change lanes, and cut a corner.

Our study uses the same BeamNG driving simulator [8] and vehicle, camera setup, and DAVE2 architec-
ture as Section 3.2. The system can follow the centerline of the road indefinitely in the racetrack environment
used in this study.

I manipulate several variables associated with the environment. For RQ1, I perform a full factorial
study across 6 scenarios, 2 maneuvers, and 3 billboard resolutions. Each of the 6 scenarios is set up on one
of 3 straight and curved road topologies in the “industrial” prepackaged environment within BeamNG. A
billboard is inserted near the track to serve as the attack surface. We fixed the physical size of the billboard

1Note that strength refers to the ability of the perturbation to fool DNNs. This stands in contrast to robustness, which
refers to a DNN’s ability to handle small changes to inputs.

11



to occupy at least 1% or about 400 pixels of the image when the car is approximately 28-30m away from
the board. Note that aspects of our study mirror the setup of the DeepBillboard [98] study to make a fair
comparison. DeepBillboard indirectly specified the billboard resolution according to pixel overlap and the
shape of each billboard; in this work, I explore the performance of each technique on billboards with three
different resolutions: 5×5, 10×10, 15×15. For RQ2, I evaluate DeepManeuver on 3 road topologies with 3
maneuvers: hit a target, change lanes, and cut a corner. Due to space limitations, only the “cut a corner”
maneuver is discussed here.

Our study shows DeepManeuver can consistently produce perturbations that affect the vehicle differently
based on state, with high accuracy in perturbing towards multiple target states. We compare DeepManeu-
ver and two baseline comparison techniques, DeepBillboard and DBB+. DeepBillboard [99] inspired my
technique and serves as a baseline for environmentally-situated adversarial perturbations that influence the
actuation of autonomous vehicles. DBB+ incorporates enhancements from DeepManeuver into DeepBill-
board, notably the inclusion of noise variance and supplementing the original trajectory with a second
collection of the unperturbed action and image sequence (but without the simulator in the loop). Table 3
summarizes the performance of these three techniques through a full factorial study of the combination of
three road topologies, two maneuvers, and three resolution levels. Topology-maneuver pairs are presented as
“scenarios” in the leftmost column. Our primary consideration is the effect on the overall system behavior,
so I count whether the target maneuvers are met (success rate), and I measure the average distance from
the original trajectory (ADOT) in meters throughout the run once the perturbation began to take effect.2

DeepBillboard
noise var=0, cut-on=28m

DBB+
noise var= 1

15
, cut-on=28m

DeepManeuver
noise var= 1

15
, cut-on=28m

Resol. Success rate ADOT Success rate ADOT Success rate ADOT
Scenario 1:
left turn on
straight road

5×5 0.6% 2.18 8.8% 2.42 26.4% 3.06
10×10 0.0% 1.99 5.8% 2.21 30.4% 2.62
15×15 0.0% 1.96 0.2% 2.01 21.0% 2.71

Scenario 2:
right turn on
straight road

5×5 99.3% 2.35 99.4% 2.31 99.2% 2.50
10×10 99.4% 2.35 99.6% 2.34 99.8% 2.34
15×15 98.7% 2.33 99.0% 2.33 88.6% 2.35

Scenario 3:
left turn on
right-hand curve

5×5 0.2% 1.09 6.4% 1.27 54.6% 1.86
10×10 8.8% 1.11 12.9% 1.32 10.8% 1.35
15×15 17.6% 1.27 16.6% 1.31 3.4% 1.43

Scenario 4:
right turn on
right-hand curve

5×5 47.2% 2.55 99.6% 3.09 100.0% 3.17
10×10 15.0% 2.48 79.0% 2.69 94.2% 2.87
15×15 6.3% 2.34 65.0% 2.50 81.6% 2.60

Table 3: All techniques on 4 out of the 6 scenarios (topology-maneuver pairs) at 3 resolutions. Metrics are
the success rate and ADOT. Best-performing values per row are in bold.

Table 3 shows 4 out of the 6 road topologies from the original study. Across all 6 topologies, Deep-
Maneuver leads to statistically comparable or greater ADOT and frequency of vehicle crashes and road
surface departures than baseline techniques for all but one combination of scenario, maneuver, and resolu-
tion. Overall, my study finds that DeepManeuver is more effective on average by 20.7pp in comparison to
state-of-the-art technique Deepbillboard, and on average by 8.6pp in comparison to DBB+ at generating per-
turbations that consistently lead to vehicle misbehavior than existing techniques, and that can successfully
cause more complex and subtle multi-objective maneuvers. 3

To evaluate the effectiveness of DeepManeuver at inducing multi-target maneuvers, I set up three ma-
neuvers: crashing into the billboard, changing lanes, and cutting a corner on the inside of the track. These
maneuvers are multi-target because they require the vehicle reach multiple objective states, and require up-
dating the output constraint based on the state of the vehicle at each timestep. For this study I keep the same
configuration parameter values as reported in Table 3: resolution=10×10, noise var= 1

15 , iters=400,

2The full paper also reports the average angle error (AAE) of each image in the test run, which represents the average

per-image effect on the DNN behavior calculated as
∑N
t=0

ψorig−ψpert

N
. A negative AAE value indicates steering angles were

shifted to the right on average; positive indicates a shift to the left.
3Note that the full paper includes an ablative exploration of the parameter space including billboard resolution, noise variance

and cut-on that due to space limitations cannot be included here. Table 3 is a coarse summary of results.
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cut-off=0.60, and cut-on=28m. A multi-objective maneuver is satisfied when every spatial objective m is
reached within a threshold of 1 meter.

Figure 6: “Cut the corner” multi-
target perturbation. Billboard is
shown in red, original trajectory in
thick blue, collection sequence in thick
orange, and test trajectories are thin
multicolored lines.

The “cut the corner” maneuver shown in Figure 6 turns close
to the inside edge of the road, instead of following the curve like
the original trajectory. The success rate for this multi-target ma-
neuver is 68.4%, with a low trajectory variance across all successful
test runs. However, the trajectories show some unintended effects,
such as forcing the car to stay straight when entering the curve in 3
test runs. The cause of this may lie in the variation in trajectories
between test runs and is a candidate for future work. Additionally,
ADOT results for this maneuver are higher than other multi-target
maneuvers because the distance from the center of the road to the
edge is farther away so it is possible to drive in a valid area farther
from the original trajectory.

3.4 Natural Adversarial Patch Generation

3.4.1 Proposed Technical Approach

Section 3.3 demonstrates that adversarial patches can be success-
fully designed to consistently enact system-level failures. However,
DeepManeuver adversarial patches do not attempt to blend into the
surrounding environment, they are dissimilar to billboards in the
DNN training dataset, and they appear unnatural to humans, mak-
ing them easy to spot and dismantle, less likely to resemble deploy-
ment conditions, and inconsistent with the training distribution.

Figure 7: Overview of natural adversarial example
generation approaches for 2 typologies.

The proposed approach seeks to address the
problem of adversarial attacks appearing out-of-
place, semantically inconsistent, or insufficiently
stealthy [100] compared with N ’s training distribu-
tionXtrain, and out of distribution with the set of all
semantically realistic inputs XIR ⊂ X. We want to
find some function Torig:pert to apply to a spatiotem-
poral series of inputs to N that maximizes the dif-
ference between ψ̂orig and ψ̂pert and conforms to one
of two typologies: (1) Torig:pert uses only features in
Xtrain to maximize this difference; or (2) Torig:pert
maximizes this difference by generating perturba-
tions that may be outside Xtrain but within XIR.

This work will expand on my previous work to
produce two distinct typologies of natural adversarial examples. Figure 7 shows the pipeline for each of
these typologies as they interface with the DeepManeuver perturbation generation loop. The first typology
will employ a decoder trained on Xtrain using the PreFixer loss function. The decoder is attached to
the beginning of the navigation DNN so that, during perturbation generation, the decoder and embedding
dictionary can minimize the distance between the perturbation and similar features in Xtrain, producing an
adversarial patch pertXtrain . The second typology of techniques will function as a post-processing step for
DeepManeuver patches. The DeepManeuver-generated patch pert undergoes a style transfer using a text
prompt and an image-to-image stable diffusion model, to produce a patch in the set of realistic images.

Typology 1 explores methods to generate examples that are constrained within Xtrain. My general
approach expands on PreFixer and DeepManeuver. First, I will examine whether a decoder trained on Xtrain

could be used to bring adversarial examples back in distribution with the DNN itself . I will investigate
training the decoder with several architectures, Xtrain subsets, and inference data from the navigation DNN
to determine what Xtrain features are preserved by the decoder. The backpropagation during adversarial
test generation will rely on the code base used in the Perturbation Generation step of DeepManeuver. Thus
the expectation is that the resulting patch-attacked images are in distribution and preserve the output of N .
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Typology 2 will explore extensions to the patches generated by DeepManeuver that modify the appearance
of existing patches with high adversarial strength to constrain them to XIR. First, I will reuse patches that
have demonstrated a high success rate in the DeepManeuver study, i.e. a patch that has led to a high
percentage of crashes per test run in simulation (see Section 3.3 and Table 3). I will then investigate whether
image-to-image stable diffusion models are sensitive enough to critical aspects important to perturbation
strength, e.g. the structure and color of the patch image, such that they can preserve perturbation strength
in the generated image while still making it appear like a natural image one might see on a roadside billboard.

3.4.2 Preliminary Work

(a) DeepManeuver 20 ×
20 degrees-of-freedom patch
perturbation.

(b) Stable Diffusion of
Figure 8a with prompt
“museum, advertisement,
detailed, colorful, artistic,
modern art”.

Figure 8: Example natural ad-
versarial perturbation using sta-
ble diffusion method.

Developing the proposed techniques requires an N that can drive S within
E , an available Xtrain, and a simulator into which adversarial patches can
be injected to test Torig:pert(XIR)’s effect on S. It also requires a patch
generation loss function that can incorporate predictions of N and the
state of S. DeepManeuver provides significant parts of this infrastructure.
First, it has a large training dataset of 150,000 images, a sophisticated
simulation framework and codebase to use that simulator, several DNNs
that can traverse a variety of roads in that simulator, and a stable of
adversarial patches that can mislead those DNNs. These aspects can be
reused by both typologies.

Additionally, my first typology of techniques can reuse parts of Pre-
Fixer. Typology 1 techniques seek to investigate naturalness by leverag-
ing known features and their effect on prediction accuracy by applying
the inputs of my previous work on feature deformation mitigation in the
presence of sensor hardware migrations. Thus the technique can reuse
and refine the generation strategy of the PreFixer work in the construc-
tion of patch attacks that are within distribution of the original training
set of the navigation DNN and preserve the perturbation strength of the
patch attack. Reduced attack strength is a typical result of attempting to
generate more natural perturbations that conform to the features present
in Xtrain [97]. This proposed technique does not promise to necessar-
ily retain the full strength of perturbations but to better leverage known
features in perturbation generation.

The second typology of techniques will investigate re-utilizing patches
generated in the DeepManeuver work with a high success rate in order
to “naturalize” them and explore features in the long tail of driving sce-
narios. This also allows the system to be tested for unanticipated inputs
not captured by the training or validation sets. Figure 8 shows an ex-
ample high-strength DeepManeuver adversarial patch for application to
a roadside billboard, and a style transformation using a stable diffusion
image-to-image pretrained model from huggingface [89]. The structural
similarity is high but Figure 8b is significantly more realistic and semanti-
cally meaningful in appearance. This image would replace the less natural
perturbation on the billboard in Figure 1a. The wide range of possible
prompt tuning (e.g. the distance between the input image and output image) that these stable diffusion
models can take in, the variety of features they can reproduce, and use of tune-able denoising shows promise
for high strength but natural perturbations.

3.4.3 Study and Expected Value

This study aims to answer the following research questions:

RQ1) How effective are in-distribution features in producing high-strength, stealthy adversarial tests? To
answer this I will assess the relationship between perturbation strength and naturalness constraints for
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constructing adversarial patches from features in Xtrain.
4

RQ2) How much of the perturbation strength can stable diffusion models preserve in realistically transformed
pre-generated adversarial patches? To answer this question, I compare the perturbation strength-naturalness
tradeoff for high-strength perturbations generated by DeepManeuver and then realistically transformed using
image-to-image diffusion.

The exploration of RQ1 will use generative model architectures to encode Xtrain and its correlation to N
predictions ψ̂, similar to the approach of PreFixer. It will also break down Xtrain into subsets according to
the location of each run and semantic segmentation to determine whether features common to these subsets
can be successfully reproduced by the decoder and to what extent the training set can control the features
reproduced by the decoder. The study will also use the decoder and latent space distance similar to [23].
This study will better explore the range of known features that the DNN misinterprets in certain contexts
which could likely appear in these contexts under deployment because they are present in the training data.

The RQ2 techniques will search the input space of various stable diffusion pretrained models to apply
a realistic transformation to existing patches from DeepManeuver that show a high success rate. Figure 8
shows such an example transformation. Figure 8a is input to a stable diffusion model and prompted according
to certain desired characteristics. The resulting patch (Figure 8b) and prompt can be automatically fuzzed
and refined such that the perturbation strength is retained according to a validation set that samples test
conditions. This technique will be applied after patch generation and will refine the input prompts along
with other parameters such as denoising strength to investigate how stable diffusion networks can be used
to preserve critical aspects of the patch while introducing naturalness. This RQ will hopefully test the long
tail as well as use the looser constraints of XIR (rather than only features in Xtrain) to better preserve the
adversarial strength of the perturbation, a common pitfall of natural adversarial examples.

For both techniques, the generated patches will be tested in simulation and ADS state and trajectory
will be compared to DeepManeuver for angle error and system-level failures. The generated patches will also
be judged for image naturalness. While some previous work relies on large-scale human studies to compile
natural image benchmarks [37], others [21, 100] use single-image comparison metrics [26, 39, 95]. Addition-
ally, similarity metrics for videos [71, 93] can be used to compare to these spatiotemporal series of images
to which the adversarial patches will be applied. All of these can use the unperturbed images as a baseline
comparison. Dataset comparison metrics [55, 56, 58] could also be useful for comparing spatiotemporal series
against Xtrain. I also propose a small authors-only human assessment of a subset of generated examples from
each RQ compared against the original patches produced by DeepManeuver. This could be supplemented
by an LLM model which can adjudicate naturalness at scale.

4 Work Plan and Timeline

Figure 9: A Gantt chart outlining my proposed work plan.

I plan to develop the naturalness ap-
proach detailed in Section 3.4 by Fall
2024 and defend my dissertation in Win-
ter 2024/2025. Figure 9 details my time-
line to tackle the proposed work and com-
plete the steps of my dissertation. I plan
to submit a first iteration of this work
to ICSE’25 NIER and the full technique
and study to either ISSTA’25 or a high-
impact software engineering journal.

4Recall that perturbation strength is the ability of the perturbation to mislead N under test.

15



Acknowledgment

This material is based in part upon
work supported by the National Science
Foundation (NSF) Award #1924777 and
Air Force Office of Scientific Research
(AFOSR) Award #FA9550-21-1-0164.

A Glossary

Term Symbol Definition

DNN N Trained neural network used to navigate S
through a deployment environment

ADS S Autonomous driving system
system state space A the set of states that S can occupy, including failure states

system state at ∈ A S’s current state at timestep t
environment e ∈ E An environment within which S can be safely deployed

control signal ψ̂t Output of N and input to S for actuation
actuation signal ψt the value upon which S can actuate, given its current state at

sensor c a perception sensor used by S to navigate E

input distribution X
the set of possible inputs to N , parameterized by

all the values the sensor reading can take

real input distribution XIR
the set of realistic inputs to N , parameterized by

intrinsic and extrinsic parameters of c and current e

input distribution shift Ta:b
A function applied to N ’s input distribution Xa to produce a new

non-identical input distribution Xb
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